Charlotte Angas Scott (1858–1932) was an internationally renowned geometer, the first British woman to earn a doctorate in mathematics, and the chair of the Bryn Mawr mathematics department for forty years. There she helped shape the burgeoning mathematics community in the United States. Scott often motivated her research as providing a “geometric treatment” of results that had previously been derived algebraically. The adjective “geometric” likely entailed many things for Scott, from her careful illustration of diagrams to her choice of references and citations. This article will focus on Scott’s striking and consistent use of geometric to describe a reality of dynamic points, lines, planes, and spaces that could be manipulated analogously to physical objects. By providing geometric interpretations of algebraic derivations, Scott committed to an early-nineteenth-century aesthetic vision of a “whole” analytical geometry that she adapted to modern research areas.