Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:36:28.588Z Has data issue: false hasContentIssue false

THE EFFECT OF SURFACE TENSION ON FREE-SURFACE FLOW INDUCED BY A POINT SINK

Published online by Cambridge University Press:  18 March 2016

G. C. HOCKING*
Affiliation:
Mathematics & Statistics, Murdoch University, Perth, WA, Australia email G.Hocking@murdoch.edu.au, Ha.Nguyen@murdoch.edu.au
H. H. N. NGUYEN
Affiliation:
Mathematics & Statistics, Murdoch University, Perth, WA, Australia email G.Hocking@murdoch.edu.au, Ha.Nguyen@murdoch.edu.au
L. K. FORBES
Affiliation:
School of Mathematics & Physics, University of Tasmania, Hobart, Australia email Larry.Forbes@utas.edu.au
T. E. STOKES
Affiliation:
Department of Mathematics, University of Waikato, Hamilton, New Zealand email stokes@waikato.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The steady, axisymmetric flow induced by a point sink (or source) submerged in an inviscid fluid of infinite depth is computed and the resulting deformation of the free surface is obtained. The effect of surface tension on the free surface is determined and is the new component of this work. The maximum Froude numbers at which steady solutions exist are computed. It is found that the determining factor in reaching the critical flow changes as more surface tension is included. If there is zero or a very small amount of surface tension, the limiting factor appears to be the formation of small wavelets on the free surface; but, as the surface tension increases, this is replaced by a tendency for the lowest point on the free surface to descend sharply as the Froude number is increased.

Type
Research Article
Copyright
© 2016 Australian Mathematical Society 

References

Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions (Dover, New York, 1970).Google Scholar
Craya, A., “Theoretical research on the flow of nonhomogeneous fluids”, La Houille Blanche 4 (1949) 4455; doi:10.1051/lhb/1949017.Google Scholar
Forbes, L. K. and Hocking, G. C., “Flow caused by a point sink in a fluid having a free surface”, J. Aust. Math. Soc. Ser. B 32 (1990) 231249; doi:10.1017/S0334270000008456.Google Scholar
Forbes, L. K. and Hocking, G. C., “Flow induced by a line sink in a quiescent fluid with surface-tension effects”, J. Aust. Math. Soc. Ser. B 34 (1993) 377391; doi:10.1017/S0334270000008961.Google Scholar
Forbes, L. K. and Hocking, G. C., “On the computation of steady axi-symmetric withdrawal from a two-layer fluid”, Comput. & Fluids 32 (2003) 385401; doi:10.1017/S0022112098008805.Google Scholar
Forbes, L. K., Hocking, G. C. and Chandler, G. A., “A note on withdrawal through a point sink in fluid of finite depth”, J. Aust. Math. Soc. Ser. B 37 (1996) 406416 doi:10.1017/S0334270000008961.Google Scholar
Hocking, G. C., “Cusp-like free-surface flows due to a submerged source or sink in the presence of a flat or sloping bottom”, J. Aust. Math. Soc. Ser. B 26 (1985) 470486 doi:10.1017/S0334270000004665.Google Scholar
Hocking, G. C., “Supercritical withdrawal from a two-layer fluid through a line sink”, J. Fluid Mech. 297 (1995) 3747; doi:10.1017/S022112095002990.Google Scholar
Hocking, G. C. and Forbes, L. K., “Withdrawal from a fluid of finite depth through a line sink, including surface tension effects”, J. Engrg. Math. 38 (2000) 91100 doi:10.1023/A:1004612117673.Google Scholar
Hocking, G. C. and Forbes, L. K., “Supercritical withdrawal from a two-layer fluid through a line sink if the lower layer is of finite depth”, J. Fluid Mech. 428 (2001) 333348 doi:10.1017/S0022112000002780.Google Scholar
Hocking, G. C., Forbes, L. K. and Stokes, T. E., “A note on steady flow into a submerged point sink”, ANZIAM J. 56 (2014) 150159; doi:10.1017/S1446181114000303.CrossRefGoogle Scholar
Hocking, G. C., Vanden Broeck, J.-M. and Forbes, L. K., “Withdrawal from a fluid of finite depth through a point sink”, ANZIAM J. 44 (2002) 181191; doi:10.1017/S1446181100013882.Google Scholar
Hocking, G. C. and Zhang, H., “A note on axisymmetric supercritical coning in a porous medium”, ANZIAM J. 55 (2014) 327335; doi:10.1017/S1446181114000170.Google Scholar
Holmes, R. J. and Hocking, G. C., “A line sink in a flowing stream with surface tension effects”, Euro. J. Appl. Maths (in press); doi:10.1017/S0956792515000546.Google Scholar
Lubin, B. T. and Springer, G. S., “The formation of a dip on the surface of a liquid draining from a tank”, J. Fluid Mech. 29 (1967) 385390; doi:10.1017/S0022112067000898.Google Scholar
Mekias, H. and Vanden Broeck, J.-M., “Subcritical flow with a stagnation point due to a source beneath a free surface”, Phys. Fluids A 3 (1991) 26522658; doi:10.1063/1.858154.Google Scholar
Peregrine, H., “A line source beneath a free surface”, Report 1248, Mathematics Research Centre, University of Wisconsin, Madison, 1972,http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0753140.Google Scholar
Sautreaux, C., “Mouvement d’un liquide parfait soumis à lapesanteur. Détermination des lignes de courant”, J. Math. Pures Appl. 7 (1901) 125160; https://eudml.org/doc/235162.Google Scholar
Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady free surface flow induced by a line sink”, J. Engrg. Math. 47 (2003) 137160; doi:10.1023/A:1025892915279.CrossRefGoogle Scholar
Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Unsteady flow induced by a withdrawal point beneath a free surface”, ANZIAM J. 47 (2005) 185202; doi:10.1017/S1446181100009986.CrossRefGoogle Scholar
Stokes, T. E., Hocking, G. C. and Forbes, L. K., “Steady free surface flow induced by a submerged ring source or sink”, J. Fluid Mech. 694 (2012) 352370; doi:10.1017/jfm.2011.551.Google Scholar
Tuck, E. O., “On air flow over free surfaces of stationary water”, J. Aust. Math. Soc. Ser. B 19 (1975) 6680; doi:10.1017/S0334270000000953.Google Scholar
Tuck, E. O. and Vanden Broeck, J.-M., “A cusp-like free surface flow due to a submerged source or sink”, J. Aust. Math. Soc. Ser. B 25 (1984) 443450; doi:10.1017/S0334270000004197.Google Scholar
Tyvand, P. A., “Unsteady free-surface flow due to a line source”, Phys. Fluids A 4 (1992) 671676 ;doi:10.1063/1.858285.Google Scholar
Vanden Broeck, J.-M. and Keller, J. B., “Free surface flow due to a sink”, J. Fluid Mech. 175 (1987) 109117; doi:10.1017/S0022112087000314.Google Scholar
Vanden Broeck, J.-M. and Keller, J. B., “An axisymmetric free surface with a 120 degree angle along a circle”, J. Fluid Mech. 342 (1997) 403409; doi:10.1017/S0022112098001335.Google Scholar
Vanden Broeck, J.-M., Schwartz, L. W. and Tuck, E. O., “Divergent low-Froude-number series expansion of nonlinear free-surface flow problems”, Proc. R. Soc. Lond. Ser. A 361 (1978) 207224; doi:10.1098/rspa.1978.0099.Google Scholar
Xue, X. and Yue, D. K. P., “Nonlinear free surface flow due to an impulsively started submerged point sink”, J. Fluid Mech. 364 (1998) 325347; doi:10.1017/S0022112098001335.Google Scholar