Let $a$, $b$, and $c$ be primitive Pythagorean numbers such that ${{a}^{2}}\,+\,{{b}^{2}}\,=\,{{c}^{2}}$ with $b$ even. In this paper, we show that if ${{b}_{0}}\,\equiv \,\in \,\,\,\left( \bmod \,a \right)$ with $\text{ }\!\!\varepsilon\!\!\text{ }\,\in \,\left\{ \pm 1 \right\}$ for certain positive divisors ${{b}_{0}}$ of $b$, then the Diophantine equation ${{a}^{x}}\,+\,{{b}^{y}}\,=\,{{c}^{z}}$ has only the positive solution $\left( x,\,y,\,z \right)\,=\,\left( 2,\,2,\,2 \right)$.