We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the complete $L$-function associated to any cuspidal automorphic representation of $\operatorname{GL}_{2}(\mathbb{A}_{\mathbb{Q}})$ has infinitely many simple zeros.
Assuming a conjecture on distinct zeros of Dirichlet $L$-functions we get asymptotic results on the average number of representations of an integer as the sum of two primes in arithmetic progression. On the other hand the existence of good error terms gives information on the location of zeros of $L$-functions. Similar results are obtained for an integer in a congruence class expressed as the sum of two primes.
We consider an arithmetic function defined independently by John G. Thompson and Greg Simay, with particular attention to its mean value, its maximal size, and the analytic nature of its Dirichlet series generating function.
The Li coefficients $\unicode[STIX]{x1D706}_{F}(n)$ of a zeta or $L$-function $F$ provide an equivalent criterion for the (generalized) Riemann hypothesis. In this paper we define these coefficients, and their generalizations, the $\unicode[STIX]{x1D70F}$-Li coefficients, for a subclass of the extended Selberg class which is known to contain functions violating the Riemann hypothesis such as the Davenport–Heilbronn zeta function. The behavior of the $\unicode[STIX]{x1D70F}$-Li coefficients varies depending on whether the function in question has any zeros in the half-plane $\text{Re}(z)>\unicode[STIX]{x1D70F}/2.$ We investigate analytically and numerically the behavior of these coefficients for such functions in both the $n$ and $\unicode[STIX]{x1D70F}$ aspects.
It is shown that the Steinitz invariants of the cubic extensions of a number field are uniformly distributed in the class group when the cubic extensions are ordered by the ideal norm of their relative discriminants. This remains true even if the extensions are restricted by specifying their splitting type at a finite number of places. The same statement is also proved for quadratic extensions.
It is proved that Epstein's zeta-function $\zeta_Q(s)$, related to a positive definite integral binary quadratic form, has a zero $ 1/2 +i\gamma $ with $T \leq \gamma \leq T+T^{5/11+\varepsilon }$ for sufficiently large positive numbers $T$. This improves a classical result of H. S. A. Potter and E. C. Titchmarsh (Proc. London Math. Soc. (2) 39 (1935) 372–384).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.