No CrossRef data available.
Article contents
ON MULTIPLICATIVE COMPOSITIONS OF INTEGERS
Published online by Cambridge University Press: 29 November 2017
Abstract
We consider an arithmetic function defined independently by John G. Thompson and Greg Simay, with particular attention to its mean value, its maximal size, and the analytic nature of its Dirichlet series generating function.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2017
References
Freud, G., Restglied eines Tauberschen Satzes, I. Acta Math. Acad. Sci. Hungar.
2
1951, 299–308.Google Scholar
Ivić, A., The Riemann Zeta-Function. Theory and Applications, Dover Publications, Inc. (Mineola, NY, 2003). Reprint of the 1985 original, Wiley, New York.Google Scholar
Landau, E. and Walfisz, A., Über die Nichtfortsetzbarkeit einiger durch Dichichletsche Reihen definierte Funktionen. Rend. Circ. Mat. Palermo
44
1920, 82–86. Landau’s Collected Works, Vol. 7, Thales, Essen, 1986, 252–256.CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory I: Classical Theory
(Cambridge Studies in Advanced Mathematics 97
), Cambridge University Press (Cambridge, 2007).Google Scholar
Salikhov, V. Kh., On the irrationality measure of ln3. Dokl. Akad. Nauk
417(6) 2007, 753–755 (Russian); Translation in Dokl. Math. 76(3) (2007), 955–957.Google Scholar
Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory
(Graduate Studies in Mathematics 163
), American Mathematical Society (Providence, RI, 2015).CrossRefGoogle Scholar
Wu, Q. and Wang, L., On the irrationality measure of log3. J. Number Theory
142
2014, 264–273.CrossRefGoogle Scholar