We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider the family of automorphic L-functions associated with primitive cusp forms of level one, ordered by weight k. Assuming that k tends to infinity, we prove a new approximation formula for the cubic moment of shifted L-values over this family which relates it to the fourth moment of the Riemann zeta function. More precisely, the formula includes a conjectural main term, the fourth moment of the Riemann zeta function and error terms of size smaller than that predicted by the recipe conjectures.
Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.
We prove an upper bound for the fifth moment of Hecke L-functions associated to holomorphic Hecke cusp forms of full level and weight k in a dyadic interval K ≤ k ≤2K, as K → ∞. The bound is sharp on Selberg’s eigenvalue conjecture.
Several measures for the density of sets of integers have been proposed, such as the asymptotic density, the Schnirelmann density, and the Dirichlet density. There has been some work in the literature on extending some of these concepts of density to higher dimensional sets of integers. In this work, we propose an extension of the Dirichlet density for sets of Gaussian integers and investigate some of its properties.
In this paper we construct a flat smooth section of an induced space $I(s,\eta )$ of $S{{L}_{2}}\left( \mathbb{R} \right)$ so that the attached Whittaker function is not of finite order. An asymptotic method of classical analysis is used.
Let be a cusp form of weight 2k and trivial character for Γ0(N), where N is prime, which is orthogonal with respect to the Petersson product to all forms g(dz), where g is of level L < N, dL\N. Let K be an imaginary quadratic field of discriminant — D where the prime N is inert. Denote by ∊ the quadratic character of determined by ∊(p) = (—D/p) for primes p not dividing D. For A an ideal class in K, let rA(m) be the number of integral ideals of norm m in A. We will be interested in the Dirichlet series L(f,A,s) defined by
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.