Let $\mathbf{H}$ be the Hilbert function of some set of distinct points in
${{\mathbb{P}}^{n}}$
and let $\alpha \,=\,\alpha (\mathbf{H})$ be the least degree of a hypersurface of
${{\mathbb{P}}^{n}}$
containing these points. Write
$\alpha ={{d}_{s}}+{{d}_{s-1}}+\cdot \cdot \cdot +{{d}_{1}}$
(where
${{d}_{i}}>0$
). We canonically decompose $\mathbf{H}$ into $s$ other Hilbert functions
$\text{H}\leftrightarrow \text{(}{{\text{H}'}_{s}}\text{,}...\text{,}{{\text{H}'}_{1}}\text{)}$
and show how to find sets of distinct points
${{\mathbb{Y}}_{s}},...,{{\mathbb{Y}}_{1}}$
, lying on reduced hypersurfaces of degrees
${{d}_{s}},...,{{d}_{1}}$
(respectively) such that the Hilbert function of
${{\mathbb{Y}}_{i}}$
is
${{\text{H'}}_{i}}$
and the Hilbert function of
$\mathbb{Y}=\bigcup _{i=1}^{s}\,{{\mathbb{Y}}_{i}}$
is $\mathbf{H}$. Some extremal properties of this canonical decomposition are also explored.