We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an $s$-generated weakly branch, but not branch, group that acts on the $m$-adic tree, for $s,m\ge 2$. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.
A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfies $m(G) \leqslant a \cdot \delta (G)^b$, for $\delta (G) = \sum _{p \text { prime}} m(G_p)$, where $G_p$ is a Sylow p-subgroup of G. To do this, we first bound $m(G)$ for all almost simple groups of Lie type (until now, no nontrivial bounds were known except for groups of rank $1$ or $2$). In particular, we prove that there exist $a,b> 0$ such that any finite simple group G of Lie type of rank r over the field $\mathbb {F}_{p^f}$ satisfies $r + \omega (f) \leqslant m(G) \leqslant a(r + \omega (f))^b$, where $\omega (f)$ denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and Liebeck that there exist $a,b> 0$ such that a minimal base for a faithful primitive action of an almost simple group of Lie type of rank r over $\mathbb {F}_{p^f}$ has size at most $ar^b + \omega (f)$.
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups. We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are conjugate.
A Grigorchuk–Gupta–Sidki (GGS)-group is a subgroup of the automorphism group of the p-regular rooted tree for an odd prime p, generated by one rooted automorphism and one directed automorphism. Pervova proved that all torsion GGS-groups do not have maximal subgroups of infinite index. Here, we extend the result to nontorsion GGS-groups, which include the weakly regular branch, but not branch, GGS-group.
For a finite group $G$, let $d(G)$ denote the minimal number of elements required to generate $G$. In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.
A generalisation of von Staudt’s theorem that every permutation of the projective line that preserves harmonic quadruples is a projective semilinear map is given. It is then concluded that any proper supergroup of permutations of the projective semilinear group over an algebraically closed field of transcendence degree at least 1 is 4-transitive.
Let G be a finite group, and let k be a nonnegative integer. We say that G has uniform spread k if there exists a fixed conjugacy class C in G with the property that for any k nontrivial elements x1,…,xk in G there exists y ∊ C such that G = ‹xi,y› for all i. Further, the exact uniform spread of G, denoted by u(G), is the largest k such that G has the uniform spread k property. By a theorem of Breuer, Guralnick, and Kantor, u(G) ≥ 2 for every finite simple group G. Here we consider the uniform spread of almost simple linear groups. Our main theorem states that if G = ‹PSLn (q),g› is almost simple, then u(G) ≥ 2 (unless G ≅ S6), and we determine precisely when u(G) tends to infinity as |G| tends to infinity.
This paper proves that a subgroup of finite index in a positively finitely generated profinite group has maximal subgroup growth at most $n^{\log (n\!)}$. In particular such a subgroup cannot be free, answering a question by L. Pyber.
Let $G=G(q)$ be a finite almost simple exceptional group of Lie type over the field of $q$ elements, where $q=p^a$ and $p$ is prime. The main result of the paper determines all maximal subgroups $M$ of $G(q)$ such that $M$ is an almost simple group which is also of Lie type in characteristic $p$, under the condition that ${\rm rank}(M) > {1\over 2}{\rm rank}(G)$. The conclusion is that either $M$ is a subgroup of maximal rank, or it is of the same type as $G$ over a subfield of $\F_q$, or $(G,M)$ is one of $(E_6^\e(q),F_4(q))$, $(E_6^\e(q),C_4(q))$, $(E_7(q),\,^3\!D_4(q))$. This completes work of the first author with Saxl and Testerman, in which the same conclusion was obtained under some extra assumptions.
We introduce the notion of abelian system on a finite group G, as a particular case of the recently defined notion of kernel system (see this Journal, September 2001). Using a famous result of Suzuki on CN-groups, we determine all finite groups with abelian systems. Except for some degenerate cases, they turn out to be special linear group of rank 2 over fields of characteristic 2 or Suzuki groups. Our ideas were heavily influenced by [1] and [8].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.