We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Soit $F$ un corps local non archimédien, et $G$ le groupe des $F$-points d’un groupe réductif connexe quasi-déployé défini sur $F$. Dans cet article, on s’intéresse aux distributions sur $G$ invariantes par conjugaison, et à l’espace de leurs restrictions à l’algèbre de Hecke $\mathcal{H}$ des fonctions sur $G$ à support compact biinvariantes par un sous-groupe d’Iwahori $I$ donné. On montre tout d’abord que les valeurs d’une telle distribution sur $\mathcal{H}$ sont entièrement déterminées par sa restriction au sous-espace de dimension finie des éléments de $\mathcal{H}$ à support dans la réunion des sous-groupes parahoriques de $G$ contenant $I$. On utilise ensuite cette propriété pour montrer, moyennant certaines conditions sur $G$, que cet espace est engendré d’une part par certaines intégrales orbitales semi-simples, d’autre part par les intégrales orbitales unipotentes, en montrant tout d’abord des résultats analogues sur les groupes finis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.