We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Building on our previous work, we study the non-relative homology of quantum group convolution algebras. Our main result establishes the equivalence of amenability of a locally compact quantum group $\mathbb{G}$ and 1-injectivity of ${{L}^{\infty }}\left( \widehat{\mathbb{G}} \right)$ as an operator ${{L}^{1}}\left( \widehat{\mathbb{G}} \right)$-module. In particular, a locally compact group $G$ is amenable if and only if its group von Neumann algebra $\text{VN}\left( G \right)$ is 1-injective as an operator module over the Fourier algebra $A\left( G \right)$. As an application, we provide a decomposability result for completely bounded ${{L}^{1}}\left( \widehat{\mathbb{G}} \right)$-module maps on ${{L}^{\infty }}\left( \widehat{\mathbb{G}} \right)$, and give a simplified proof that amenable discrete quantum groups have co-amenable compact duals, which avoids the use of modular theory and the Powers-Størmer inequality, suggesting that our homological techniques may yield a new approach to the open problem of duality between amenability and co-amenability.
We prove that if ${\it\rho}$ is an irreducible positive definite function in the Fourier–Stieltjes algebra $B(G)$ of a locally compact group $G$ with $\Vert {\it\rho}\Vert _{B(G)}=1$, then the iterated powers $({\it\rho}^{n})$ as a sequence of unital completely positive maps on the group $C^{\ast }$-algebra converge to zero in the strong operator topology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.