We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Toeplitz operators on the space of all real analytic functions on the real line and the space of all holomorphic functions on finitely connected domains in the complex plane. In both cases, we show that the space of all Toeplitz operators is isomorphic, when equipped with the topology of uniform convergence on bounded sets, with the symbol algebra. This is surprising in view of our previous results, since we showed that the symbol map is not continuous in this topology on the algebra generated by all Toeplitz operators. We also show that in the case of the Fréchet space of all holomorphic functions on a finitely connected domain in the complex plane, the commutator ideal is dense in the algebra generated by all Toeplitz operators in the topology of uniform convergence on bounded sets.
Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family
$\mathcal {F}$
of (real or complex) analytic functions, such that
$\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$
is countable for every x. We strengthen Erdős’ result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We use such systems to construct, assuming CH, an equivalence relation
$\sim $
on
$\mathbb {R}$
such that any ‘analytic-anonymous’ attempt to predict the map
$x \mapsto [x]_\sim $
must fail almost everywhere. This provides a consistently negative answer to a question of Bajpai-Velleman [2].
Let ${{C}^{M}}$ denote a Denjoy–Carleman class of ${{C}^{\infty }}$ functions (for a given logarithmically-convex sequence $M\,=\,\left( {{M}_{n}} \right))$. We construct: (1) a function in ${{C}^{M}}\left( \left( -1,\,1 \right) \right)$ that is nowhere in any smaller class; (2) a function on $\mathbb{R}$ that is formally ${{C}^{M}}$ at every point, but not in ${{C}^{M}}\left( \mathbb{R} \right)$; (3) (under the assumption of quasianalyticity) a smooth function on ${{\mathbb{R}}^{p}}\,\left( p\,\ge \,2 \right)$ that is ${{C}^{M}}$ on every ${{C}^{M}}$ curve, but not in ${{C}^{M}}\left( {{\mathbb{R}}^{p}} \right)$.
Consider quasianalytic local rings of germs of smooth functions closed under composition, implicit equation, and monomial division. We show that if the Weierstrass Preparation Theoremholds in such a ring, then all elements of it are germs of analytic functions.
We characterize composition operators on spaces of real analytic functions which at the same time have closed image and are open onto their images. Under some mild assumptions, we also characterize composition operators with closed range and composition operators open onto their images.
A Bernstein–Walsh type inequality for ${{C}^{\infty }}$ functions of several variables is derived, which then is applied to obtain analogs and generalizations of the following classical theorems: (1) Bochnak– Siciak theorem: a ${{C}^{\infty }}$ function on ${{\mathbb{R}}^{n}}$ that is real analytic on every line is real analytic; (2) Zorn–Lelong theorem: if a double power series $F\left( x,y \right)$ converges on a set of lines of positive capacity then $F\left( x,y \right)$ is convergent; (3) Abhyankar–Moh–Sathaye theorem: the transfinite diameter of the convergence set of a divergent series is zero.
This paper focuses on the analyticity of the limiting behavior of a class of dynamical systems defined by iteration of non-expansive random operators. The analyticity is understood with respect to the parameters which govern the law of the operators. The proofs are based on contraction with respect to certain projective semi-norms. Several examples are considered, including Lyapunov exponents associated with products of random matrices both in the conventional algebra, and in the (max, +) semi-field, and Lyapunov exponents associated with non-linear dynamical systems arising in stochastic control. For the class of reducible operators (defined in the paper), we also address the issue of analyticity of the expectation of functionals of the limiting behavior, and connect this with contraction properties with respect to the supremum norm. We give several applications to queueing theory.
Let ƒ = (ƒ1,… ,ƒn): (ℝn, 0) → (ℝn, 0) be a real analytic mapping and 0 is isolated in ƒ-1 (0). The aim of this paper is to describe the degree deg0ƒ in terms of parametrizations of irreducible components of the real analytic curve given by the equations ƒ1(x) = ̇̇̇= ƒn-1 (x) = 0 near 0 ∈ ℝn.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.