Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T23:40:30.911Z Has data issue: false hasContentIssue false

On the Degree of an Analytic Map Germ

Published online by Cambridge University Press:  20 November 2018

Zbigniew Duszak*
Affiliation:
Institute of Applied Mechanics Technical University, Kielce Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ƒ = (ƒ1,… ,ƒn): (ℝn, 0) → (ℝn, 0) be a real analytic mapping and 0 is isolated in ƒ-1 (0). The aim of this paper is to describe the degree deg0ƒ in terms of parametrizations of irreducible components of the real analytic curve given by the equations ƒ1(x) = ̇̇̇= ƒn-1 (x) = 0 near 0 ∈ ℝn.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Arnold, V.I., Index of a singular point of a vector field, the Petrovski-Oleinik inequality and mixed Hodge structures, Funct. Anal. Apl. 2(1978), 111.Google Scholar
2. Arnold, V.I., Varcenko, A.N. and Gussein, C.M.-Zade, Singularities of differentiate mappings I. Nauka, Moscow, 1982. (in Russian).Google Scholar
3. Bliznyakov, N.M., Cauchy indices and the index of a singular point of a vector field. Lecture Notes in Math., 1214, Springer Verlag, Berlin-Heidelberg-New York, 1986.120.Google Scholar
4. Eisenbud, D. and Levine, H., An algebraic formula for the degree of C°° map germ, Annals of Math., 106(1977), 1938.Google Scholar
5. Hirsh, M.W., Differential topology. Springer Verlag, New York-Heidelberg-Berlin, 1976.Google Scholar
6. Khovansky, A.G., Index of the polynomial vectorfield, Funct. Anal. Apl. (1) 13(1979), 4958. (in Russian).Google Scholar
7. Krasnosielski, M.A., Vector fields on the plane. Nauka, Moscow, 1963. (in Russian).Google Scholar
8. Milnor, J.W., Topology from the differential viewpoint. The Univ. Press of Virginia, Charlottesville, 1965.Google Scholar
9. Miodek, A., The generalized parametric multiplicity Bull. Soc. Sci. Lett. Lodz, (46)XXXVII, 6(1987), 114.Google Scholar
10. Narasimhan, R., Introduction to the theory of analytic spaces. Lecture Notes in Math., 25, Springer Verlag, Berlin-Heidelberg-New York, 1966.Google Scholar
11. Ploski, A., Multiplicity and the Lojasiewicz exponent. Banach Center Publications 20, Singularities, 383- 394, Warsaw: PWN 1987.Google Scholar
12. Rees, D. and Sharp, R.Y., On the theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2), 18(1987), 449467.Google Scholar
13. Teissier, B., Sur une inégalité a la Minkowski pour les multiplicités, Annals of Math. 106(1977), 3844.(appendix).Google Scholar
14. Teissier, B. On a Minkowski-type inequalities-II. in C.P. Ramanujan —A Tribute. Tata Instytut of Fundamental Research. Studies in Math., Springer-Verlag, 347361.1978.Google Scholar
15. Whitney, H., An elementary structure of real algebraic varieties, Annals of Math. 66(1957), 545556.Google Scholar
16. Whitney, H., Complex analytic varieties. Reading, Massachusetts-Menlo-Park, California-London-Don Mills, Ontario: Addison-Wesley Publ. Comp., 1972.Google Scholar