We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb {R}_{\mathcal {G}}$ and the reduct of $\mathbb {R}_{\text {an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the gamma function on $(0,\infty )$ and the zeta function on $(1,\infty )$.
We consider expansions of o-minimal structures on the real field by collections of restrictions to the positive real line of the canonical Weierstrass products associated with sequences such as $(-n^{s})_{n>0}$ (for $s>0$) and $(-s^{n})_{n>0}$ (for $s>1$), and also expansions by associated functions such as logarithmic derivatives. There are only three possible outcomes known so far: (i) the expansion is o-minimal (that is, definable sets have only finitely many connected components); (ii) every Borel subset of each $\mathbb{R}^{n}$ is definable; (iii) the expansion is interdefinable with a structure of the form $(\mathfrak{R}^{\prime },\unicode[STIX]{x1D6FC}^{\mathbb{Z}})$ where $\unicode[STIX]{x1D6FC}>1$, $\unicode[STIX]{x1D6FC}^{\mathbb{Z}}$ is the set of all integer powers of $\unicode[STIX]{x1D6FC}$, and $\mathfrak{R}^{\prime }$ is o-minimal and defines no irrational power functions.
We prove two main results on Denjoy–Carleman classes: (1) a composite function theorem which asserts that a function $f(x)$ in a quasianalytic Denjoy–Carleman class ${\mathcal{Q}}_{M}$, which is formally composite with a generically submersive mapping $y=\unicode[STIX]{x1D711}(x)$ of class ${\mathcal{Q}}_{M}$, at a single given point in the source (or in the target) of $\unicode[STIX]{x1D711}$ can be written locally as $f=g\circ \unicode[STIX]{x1D711}$, where $g(y)$ belongs to a shifted Denjoy–Carleman class ${\mathcal{Q}}_{M^{(p)}}$; (2) a statement on a similar loss of regularity for functions definable in the $o$-minimal structure given by expansion of the real field by restricted functions of quasianalytic class ${\mathcal{Q}}_{M}$. Both results depend on an estimate for the regularity of a ${\mathcal{C}}^{\infty }$ solution $g$ of the equation $f=g\circ \unicode[STIX]{x1D711}$, with $f$ and $\unicode[STIX]{x1D711}$ as above. The composite function result depends also on a quasianalytic continuation theorem, which shows that the formal assumption at a given point in (1) propagates to a formal composition condition at every point in a neighbourhood.
Let ${{C}^{M}}$ denote a Denjoy–Carleman class of ${{C}^{\infty }}$ functions (for a given logarithmically-convex sequence $M\,=\,\left( {{M}_{n}} \right))$. We construct: (1) a function in ${{C}^{M}}\left( \left( -1,\,1 \right) \right)$ that is nowhere in any smaller class; (2) a function on $\mathbb{R}$ that is formally ${{C}^{M}}$ at every point, but not in ${{C}^{M}}\left( \mathbb{R} \right)$; (3) (under the assumption of quasianalyticity) a smooth function on ${{\mathbb{R}}^{p}}\,\left( p\,\ge \,2 \right)$ that is ${{C}^{M}}$ on every ${{C}^{M}}$ curve, but not in ${{C}^{M}}\left( {{\mathbb{R}}^{p}} \right)$.
We study Gevrey classes of holomorphic functions of several variables on a polysector, and their relation to classes of Gevrey strongly asymptotically developable functions. A new Borel-Ritt-Gevrey interpolation problem is formulated, and its solution is obtained by the construction of adequate linear continuous extension operators. Our results improve those given by Haraoka in this context, and extend to several variables the one-dimensional versions of the Borel-Ritt-Gevrey theorem given by Ramis and Thilliez, respectively. Some rigidity properties for the constructed operators are stated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.