We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A direct application of Zorn’s lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$ has an extension to a Lipschitz map $\widetilde{f}:\mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$. This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{\ell }$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the $p$-adic context that $\widetilde{f}$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or some intermediary notion). We proceed by proving the existence of definable Lipschitz retractions of $\mathbb{Q}_{p}^{n}$ to the topological closure of $X$ when $X$ is definable.
Given a non-oscillating gradient trajectory $\left| \text{ }\!\!\gamma\!\!\text{ } \right|$ of a real analytic function $f$, we show that the limit $v$ of the secants at the limit point $0$ of $\left| \text{ }\!\!\gamma\!\!\text{ } \right|$ along the trajectory $\left| \text{ }\!\!\gamma\!\!\text{ } \right|$ is an eigenvector of the limit of the direction of the Hessian matrix Hess$\left( f \right)$ at $0$ along $\left| \text{ }\!\!\gamma\!\!\text{ } \right|$. The same holds true at infinity if the function is globally sub-analytic. We also deduce some interesting estimates along the trajectory. Away from the ends of the ambient space, this property is of metric nature and still holds in a general Riemannian analytic setting.
Let $M\subset \mathbb{R}^n$ be a connected component of an algebraic set $\varphi^{-1}(0)$, where $\varphi$ is a polynomial of degree $d$. Assume that $M$ is contained in a ball of radius $r$. We prove that the geodesic diameter of $M$ is bounded by $2r\nu(n)d(4d-5)^{n-2}$, where $\nu(n)=2{\Gamma({1}/{2})\Gamma(({n+1})/{2})}{\Gamma({n}/{2})}^{-1}$. This estimate is based on the bound $r\nu(n)d(4d-5)^{n-2}$ for the length of the gradient trajectories of a linear projection restricted to $M$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.