We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We strengthen, in various directions, the theorem of Garnett that every $\unicode[STIX]{x1D70E}$-compact, completely regular space $X$ occurs as a Gleason part for some uniform algebra. In particular, we show that the uniform algebra can always be chosen so that its maximal ideal space contains no analytic discs. We show that when the space $X$ is metrizable, the uniform algebra can be chosen so that its maximal ideal space is metrizable as well. We also show that for every locally compact subspace $X$ of a Euclidean space, there is a compact set $K$ in some $\mathbb{C}^{N}$ so that $\widehat{K}\backslash K$ contains a Gleason part homeomorphic to $X$, and $\widehat{K}$ contains no analytic discs.
We showbymeans of an example in ${{\mathbb{C}}^{3}}$ that Gromov’s theoremon the presence of attached holomorphic discs for compact Lagrangianmanifolds is not true in the subcritical real-analytic case, even in the absence of an obvious obstruction, i.e., polynomial convexity.
We prove the existence of a (in fact many) holomorphic function $f$ in ${{\mathbb{C}}^{d}}$ such that, for any $a\ne 0$, its translations $f(\cdot +na)$ are dense in $H({{\mathbb{C}}^{d}})$.
Consider the polynomial hull of a smoothly varying family of strictly convex smooth domains fibered over the unit circle. It is well-known that the boundary of the hull is foliated by graphs of analytic discs. We prove that this foliation is smooth, and we show that it induces a complex flow of contactomorphisms. These mappings are quasiconformal in the sense of Korányi and Reimann. A similar bound on their quasiconformal distortion holds as in the one-dimensional case of holomorphic motions. The special case when the fibers are rotations of a fixed domain in ${{\text{C}}^{\text{2}}}$ is studied in details.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.