The main result ensures that the scalar problem $x''\,{=}\,f(x)$, $x(0)\,{=}\,x_0$, $x'(0)\,{=}\,x_1,$ has a nonconstant locally $W^{2,1}$ solution if and only if there exists a nontrivial interval $J$ such that $x_0 \in J$, $f \in L^1_{\rm loc}(J)$, $x_1^2+2\int_{x_0}^{y}{f(s)\,ds} > 0$ for almost all $y \in J$ and \[\frac{\max\{1,|f|\}}{ \sqrt{x_1^2+2\int_{x_0}^{\cdot}{f(s)\,ds}}} \in L^1_{\rm loc}(J).\]
Necessary and sufficient conditions for local and global uniqueness and for existence of periodic solutions are also established.