We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vertically vibrating a liquid bath may allow a self-propelled wave-particle entity to move on its free surface. The horizontal dynamics of this walking droplet, under the constraint of an external drag force, can be described adequately by an integro-differential trajectory equation. For a sinusoidal wave field, this equation is equivalent to a closed three-dimensional system of nonlinear ODEs. We explicitly define a stability boundary for the system and a quantised criterion for its partial integrability in the meromorphic category.
In this paper, we are interested in investigating notions of stability for generalized linear differential equations (GLDEs). Initially, we propose and revisit several definitions of stability and provide a complete characterization of them in terms of upper bounds and asymptotic behaviour of the transition matrix. In addition, we illustrate our stability results for GLDEs to linear periodic systems and linear impulsive differential equations. Finally, we prove that the well-known definitions of uniform asymptotic stability and variational asymptotic stability are equivalent to the global uniform exponential stability introduced in this article.
Let f be a smooth symplectic diffeomorphism of
${\mathbb R}^2$
admitting a (non-split) separatrix associated to a hyperbolic fixed point. We prove that if f is a perturbation of the time-1 map of a symplectic autonomous vector field, this separatrix is accumulated by a positive measure set of invariant circles. However, we provide examples of smooth symplectic diffeomorphisms with a Lyapunov unstable non-split separatrix that are not accumulated by invariant circles.
We propose and analyse an age-structured model for within-host HIV virus dynamics which is incorporated with both virus-to-cell and cell-to-cell infection routes, and proliferations of both uninfected and infected cells in the form of logistic growth. The model turns out to be a hybrid system with two differential-integral equations and one first-order partial differential equation. We perform some rigorous analyses for the considered model. Among the interesting dynamical behaviours of the model is the occurrence of backward bifurcation in terms of the basic reproduction number R0 at R0 = 1, which raises new challenges for effective infection control. We also discuss the cause of such a backward bifurcation, based on our analytical results.
The signal transduction pathway is the important process of communication of the cells. It is the dynamical interaction between the ligand-receptor complexes and an inhibitor protein in second messenger synthesis. The signaling molecules are detected and bounded by receptors, typically G-Protein receptors, across the cell membrane and that in turns alerts intracellular molecules to stimulate a response or a desired consequence in the target cells. In this research, we consider a model of the signal transduction process consisting of a system of three differential equations which involve the dynamic interaction between an inhibitor protein and the ligand-receptor complexes in the second messenger synthesis. We will incorporate a delay τ in the time needed before the signal amplification process can take effect on the production of the ligand-receptor complex. We investigate persistence and stability of the system. It is shown that the system allows positive solutions and the positive equilibrium is locally asymptotically stable under suitable conditions on the system parameters.
A nonlinear mathematical model for innovation diffusion is proposed. The system of ordinary differential equations incorporates variable external influences (the cumulative density of marketing efforts), variable internal influences (the cumulative density of word of mouth) and a logistically growing human population (the variable potential consumers). The change in population density is due to various demographic processes such as intrinsic growth rate, emigration, death rate etc. Thus the problem involves two dynamic variables viz. a non-adopter population density and an adopter population density. The model is analysed qualitatively using the stability theory of differential equations, with the help of the corresponding characteristic equation of the system. The interior equilibrium point can be stable for all time delays to a critical value, beyond which the system becomes unstable and a Hopf bifurcation occurs at a second critical value. Employing normal form theory and a centre manifold theorem applicable to functional differential equations, we derive some explicit formulas determining the stability, the direction and other properties of the bifurcating periodic solutions. Our numerical simulations show that the system behaviour can become extremely complicated as the time delay increases, with a stable interior equilibrium point leading to a limit cycle with one local maximum and minimum per cycle (Hopf bifurcation), then limit cycles with more local maxima and minima per cycle, and finally chaotic solutions.
Mass migration of cells (via wave motion) plays an important role in many biological processes, particularly chemotaxis. We study the existence of travelling wave solutions for a chemotaxis model on a microscopic scale. The interaction between nutrients and chemoattractants are considered. Unlike previous approaches, we allow for diffusion of substrates, degradation of chemoattractants and cell growth (constant and linear growth rate). We apply asymptotic methods to investigate the behaviour of the solutions when cells are highly sensitive to extracellular signalling. Explicit solutions are demonstrated, and their biological implications are presented. The results presented here extend and generalize known results.
In this paper, a nonlinear stage-structured model for Lyme disease is considered. The model is a system of diòerential equations with two time delays. We derive the basic reproductive rate ${{R}_{0}}\left( {{\tau }_{1}},\,{{\tau }_{2}} \right)$. If ${{R}_{0}}\left( {{\tau }_{1}},\,{{\tau }_{2}} \right)\,<\,1$, then the boundary equilibrium is globally asymptotically stable. If ${{R}_{0}}\left( {{\tau }_{1}},\,{{\tau }_{2}} \right)\,>\,1$, then there exists a unique positive equilibrium whose local asymptotic stability and the existence of Hopf bifurcations are established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of Hopf bifurcations and the stability of the bifurcating periodic solutions is derived by using the normal form and the center manifold theory. Some numerical simulations are performed to confirm the correctness of theoretical analysis. Finally, some conclusions are given.
In this paper, we study the stability in the Lyapunov sense of the equilibrium solutions of discrete or difference Hamiltonian systems in the plane. First, we perform a detailed study of linear Hamiltonian systems as a function of the parameters. In particular we analyze the regular and the degenerate cases. Next, we give a detailed study of the normal form associated with the linear Hamiltonian system. At the same time we obtain the conditions under which we can get stability (in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams as a function of the parameters. After that, we study the stability of the equilibrium solutions of the first order difference system in the plane associated with mechanical Hamiltonian systems and Hamiltonian systems defined by cubic polynomials. Finally, we point out important differences with the continuous case.
We consider a theoretical model for the spread of avian influenza in a poultry population. An avian influenza epidemic model incorporating spatial spread as a diffusive process is discussed, where the infected individuals are restricted from moving to prevent spatial transmission but infection occurs when susceptible individuals come into contact with infected individuals or the virus is contracted from the contaminated environment (e.g. through water or food). The infection is assumed to spread radially and isotropically. After a stability and phase plane analysis of the equivalent system of ordinary differential equations, it is shown that an analytical solution can be obtained in the form of a travelling wave. We outline the methodology for finding such analytical solutions using a travelling wave coordinate when the wave is assumed to move at constant speed. Numerical simulations also produce the travelling wave solution, and a comparison is made with some predictions based on empirical data reported in the literature.
A susceptible–exposed–infectious theoretical model describing Tasmanian devil population and disease dynamics is presented and mathematically analysed using a dynamical systems approach to determine its behaviour under a range of scenarios. The steady states of the system are calculated and their stability analysed. Closed forms for the bifurcation points between these steady states are found using the rate of removal of infected individuals as a bifurcation parameter. A small-amplitude Hopf region, in which the populations oscillate in time, is shown to be present and subjected to numerical analysis. The model is then studied in detail in relation to an unfolding parameter which describes the disease latent period. The model’s behaviour is found to be biologically reasonable for Tasmanian devils and potentially applicable to other species.
The paper deals with periodic systems of ordinary differential equations (ODEs). A new approach to the investigation of variations of multipliers under perturbations is suggested. It enables us to establish explicit conditions for the stability and instability of perturbed systems.
The following system is considered in this paper: The primary goal is to establish conditions on time-varying coefficients e(t), f(t), g(t) and h(t) and a forcing term p(t) for all solutions to converge to the origin (0,0) as . Here, the zero solution of the corresponding homogeneous linear system is assumed to be neither uniformly stable nor uniformly attractive. Sufficient conditions are given for asymptotic stability of the zero solution of the nonlinear perturbed system under the assumption that q(t,0,0)=0.
In this paper we study the instability of certain nth order differential equations by means of Liapunov's functions and obtain some sufficient conditions for the equations being unstable. A method of constructing Liapunov's function for instability is being perfected. In particular the problem Ezeio posed in 1982 has been resolved to some extent.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.