We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
Every discrete definable subset of a closed asymptotic couple with ordered scalar field ${\boldsymbol {k}}$ is shown to be contained in a finite-dimensional ${\boldsymbol {k}}$-linear subspace of that couple. It follows that the differential-valued field $\mathbb {T}$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $\mathbb {R}$ as the underlying set for the second sort.
We analyse the structure of equilibria of a coagulation–fragmentation–death model of silicosis. We present exact multiplicity results in the particular case of piecewise constant coefficients, results on existence and non-existence of equilibria in the general case, as well as precise asymptotics for the infinite series that arise in the case of power law coefficients.
Linear second order differential equations of the form d2w/dz2 − {u2f(u, z) + g(z)}w = 0 are studied, where |u| → ∞ and z lies in a complex bounded or unbounded domain D. If f(u, z) and g(z) are meromorphic in D, and f(u, z) has no zeros, the classical Liouville-Green/WKBJ approximation provides asymptotic expansions involving the exponential function. The coefficients in these expansions either multiply the exponential or in an alternative form appear in the exponent. The latter case has applications to the simplification of turning point expansions as well as certain quantum mechanics problems, and new computable error bounds are derived. It is shown how these bounds can be sharpened to provide realistic error estimates, and this is illustrated by an application to modified Bessel functions of complex argument and large positive order. Explicit computable error bounds are also derived for asymptotic expansions for particular solutions of the nonhomogeneous equations of the form d2w/dz2 − {u2f(z) + g(z)}w = p(z).
In this paper various analytic techniques are combined in order to study the average of a product of a Hecke $L$-function and a symmetric square $L$-function at the central point in the weight aspect. The evaluation of the second main term relies on the theory of Maaß forms of half-integral weight and the Rankin–Selberg method. The error terms are bounded using the Liouville–Green approximation.
In this paper, periodic steady-state of a liquid film flowing over a periodic uneven wall is investigated via a classical method. Specifically, we analyze a long-wave model that is valid at the near-critical Reynolds number. For the periodic wall surface, we construct an iteration scheme in terms of an integral form of the original steady-state problem. The uniform convergence of the scheme is proved so that we can derive the existence and the uniqueness as well as the asymptotic formula of the periodic solutions.
We discuss the existence of finite critical trajectories connecting two zeros in certain families of quadratic differentials. In addition, we reprove some results about the support of the limiting root-counting measures of the generalised Laguerre and Jacobi polynomials with varying parameters.
We present a review on the accuracy of asymptotic models for the scattering problem of electromagnetic waves in domains with thin layer. These models appear as first order approximations of the electromagnetic field. They are obtained thanks to a multiscale expansion of the exact solution with respect to the thickness of the thin layer, that makes possible to replace the thin layer by approximate conditions. We present the advantages and the drawbacks of several approximations together with numerical validations and simulations. The main motivation of this work concerns the computation of electromagnetic field in biological cells. The main difficulty to compute the local electric field lies in the thinness of the membrane and in the high contrast between the electrical conductivities of the cytoplasm and of the membrane, which provides a specific behavior of the electromagnetic field at low frequencies.
In this article, we consider a domain consisting of two cavities linked by a hole of small size. We derive a numerical method to compute an approximation of the eigenvalues of an elliptic operator without refining in the neighborhood of the hole. Several convergence rates are obtained and illustrated by numerical simulations.
We consider an optimal control problem with an 1D singularly perturbed differential state equation. For solving such problems one uses the enhanced system of the state equation and its adjoint form. Thus, we obtain a system of two convection-diffusion equations. Using linear finite elements on adapted grids we treat the effects of two layers arising at different boundaries of the domain. We proof uniform error estimates for this method on meshes of Shishkin type. We present numerical results supporting our analysis.
This paper presents new Gaussian approximations for the cumulative distribution function P(Aλ ≤ s) of a Poisson random variable Aλ with mean λ. Using an integral transformation, we first bring the Poisson distribution into quasi-Gaussian form, which permits evaluation in terms of the normal distribution function Φ. The quasi-Gaussian form contains an implicitly defined function y, which is closely related to the Lambert W-function. A detailed analysis of y leads to a powerful asymptotic expansion and sharp bounds on P(Aλ ≤ s). The results for P(Aλ ≤ s) differ from most classical results related to the central limit theorem in that the leading term Φ(β), with is replaced by Φ(α), where α is a simple function of s that converges to β as s tends to ∞. Changing β into α turns out to increase precision for small and moderately large values of s. The results for P(Aλ ≤ s) lead to similar results related to the Erlang B formula. The asymptotic expansion for Erlang's B is shown to give rise to accurate approximations; the obtained bounds seem to be the sharpest in the literature thus far.
Dans cet article on étudie la différence entre les deux premières valeurs propres, le splitting, d’un opérateur de Klein–Gordon semi-classique unidimensionnel, dans le cas d’un potentiel symétrique présentant un double puits. Dans le cas d’une petite barrière de potentiel, B. Helffer et B. Parisse ont obtenu des résultats analogues à ceux existant pour l’opérateur de Schrödinger. Dans le cas d’une grande barrière de potentiel, on obtient ici des estimations des tranformées de Fourier des fonctions propres qui conduisent à une conjecture du splitting. Des calculs numériques viennent appuyer cette conjecture.
A global existence result for solutions $u(t)$ of the differential equation $x^{\prime \prime }+f(t,x)=p(t)$, $t\geq t_0\geq 1$, that can be written as $u(t)=P(t)+o(1)$ for all large $t$, where $P^{\prime \prime}(t)=p(t)$, is established by means of the Schauder-Tikhonov theorem. It generalizes the recent work of Lipovan [On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations, Glasgow Math. J.45 (2003), 179–87] and allows for a unifying treatment of the existence problems concerning asymptotically linear and oscillatory solutions of second order nonlinear differential equations.
This work is devoted to asymptotic properties of singularly perturbed Markov chains in discrete time. The motivation stems from applications in discrete-time control and optimization problems, manufacturing and production planning, stochastic networks, and communication systems, in which finite-state Markov chains are used to model large-scale and complex systems. To reduce the complexity of the underlying system, the states in each recurrent class are aggregated into a single state. Although the aggregated process may not be Markovian, its continuous-time interpolation converges to a continuous-time Markov chain whose generator is a function determined by the invariant measures of the recurrent states. Sequences of occupation measures are defined. A mean square estimate on a sequence of unscaled occupation measures is obtained. Furthermore, it is proved that a suitably scaled sequence of occupation measures converges to a switching diffusion.
Motivated by various applications in queueing systems, this work is devoted to continuous-time Markov chains with countable state spaces that involve both fast-time scale and slow-time scale with the aim of approximating the time-varying queueing systems by their quasistationary counterparts. Under smoothness conditions on the generators, asymptotic expansions of probability vectors and transition probability matrices are constructed. Uniform error bounds are obtained, and then sequences of occupation measures and their functionals are examined. Mean square error estimates of a sequence of occupation measures are obtained; a scaled sequence of functionals of occupation measures is shown to converge to a Gaussian process with zero mean. The representation of the variance of the limit process is also explicitly given. The results obtained are then applied to treat Mt/Mt/1 queues and Markov-modulated fluid buffer models.
For the $q$-series $\sum\nolimits_{n=0}^{\infty }{{{a}^{n}}{{q}^{b{{n}^{2}}+cn}}/}\,{{(q)}_{n}}$ we construct a companion $q$-series such that the asymptotic expansions of their logarithms as $q\,\to \,{{1}^{-}}$ differ only in the dominant few terms. The asymptotic expansion of their quotient then has a simple closed form; this gives rise to a new $q$–hypergeometric identity. We give an asymptotic expansion of a general class of $q$-series containing some of Ramanujan's mock theta functions and Selberg's identities.
It is known that the n-th denominators Qn (α, β, z) of a real J-fraction
where
form an orthogonal polynomial sequence (OPS) with respect to a distribution function ψ(t) on ℝ. We use separate convergence results for continued fractions to prove the asymptotic formula
the convergence being uniform on compact subsets of
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.