We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.
This paper is concerned with a class of non-symmetric operators, that is, 𝒥-symmetric operators, in Hilbert spaces. A sufficient condition for λ ∈ C being an element of the essential spectrum of a 𝒥-symmetric operator is given in terms of the number of linearly independent solutions of a certain homogeneous equation, and a characterization for points of the essential spectrum plus the set of all eigenvalues of a 𝒥-symmetric operator is obtained in terms of the numbers of linearly independent solutions of certain inhomogeneous equations. As direct applications, the corresponding results are obtained for singular 𝒥-symmetric Hamiltonian systems and their special forms of singular Sturm-Liouville equations with complex-valued coefficients, which enable us to study the spectra of singular 𝒥-symmetric differential expressions using numerous tools available in the fundamental theory of differential equations.
We show that for self-adjoint Jacobi matrices and Schrödinger operators, perturbed by dissipative potentials in $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\ell ^1({\mathbb{N}})$ and $L^1(0,\infty )$ respectively, the finite section method does not omit any points of the spectrum. In the Schrödinger case two different approaches are presented. Many aspects of the proofs can be expected to carry over to higher dimensions, particularly for absolutely continuous spectrum.
We consider a class of singular Schrödinger operators H that act in L2(0,∞), each of which is constructed from a positive function ϕ on (0,∞). Our analysis is direct and elementary. In particular it does not mention the potential directly or make any assumptions about the magnitudes of the first derivatives or the existence of second derivatives of ϕ. For a large class of H that have discrete spectrum, we prove that the eigenvalue asymptotics of H does not depend on rapid oscillations of ϕ or of the potential. Similar comments apply to our treatment of the existence and completeness of the wave operators.
Let L be a nonnegative self-adjoint operator on L2 (X), where X is a space of homogeneous type. Assume that L generates an analytic semigroup e–tl whose kernel satisfies the standard Gaussian upper bounds. We prove that the spectral multiplier F(L) is bounded on for 0 < p < 1, the Hardy space associated to operator L, when F is a suitable function.
Asymptotic approximations to the Green's functions of Sturm–Liouville boundary-value problems on graphs are obtained. These approximations are used to study the regularized traces of the differential operators associated with these boundary-value problems. Various inverse spectral problems for Sturm–Liouville boundary-value problems on graphs resembling those considered in Halberg and Kramer's ‘A generalization of the trace concept' (Duke Mathematics Journal27 (1960), 607–617), for Sturm–Liouville problems, and Pielichowski's ‘An inverse spectral problem for linear elliptic differential operators' (Universitatis Iagellonicae Acta Mathematica27 (1988), 239–246), for elliptic boundary-value problems, are solved.
We solve the inverse spectral problems for the class of Sturm–Liouville operators with singular real-valued potentials from the Sobolev space $W^{s-1}_2(0,1)$, $s\in[0,1]$. The potential is recovered from two spectra or from one spectrum and the norming constants. Necessary and sufficient conditions for the spectral data to correspond to a potential in $W^{s-1}_2(0,1)$ are established.
The absolutely continuous spectrum of a very general class of differential operators of order $2n$ is determined, for operators whose coefficients satisfy conditions that combine smoothness and decay properties. The main methods are asymptotic integration and the analysis of the associated $M$-matrix. The form of the solutions precludes the absence of a singular continuous spectrum.
An explicit asymptotic formula is obtained for the norms of the spectral projections of the non-self-adjoint harmonic oscillator $H$. It is deduced that the spectral expansion of $\rme^{-Ht}$ is norm convergent if and only if $t$ is greater than a certain explicit positive constant.
The Gilbert-Pearson characterization of the spectrum is established for a generalized Sturm-Liouville equation with two singular endpoints. It is also shown that strong absolute continuity for the one singular endpoint problem guarantees absolute continuity for the two singular endpoint problem. As a consequence, we obtain the result that strong nonsubordinacy, at one singular endpoint, of a particular solution guarantees the nonexistence of subordinate solutions at both singular endpoints.
we study the behaviour of the matrix m-function at the spectral gap endpoints. In particular, we extend the result of Hinton, Klaus and Shaw that En, a gap endpoint, is a half-bound state (HBS) if and only if (E − En)½m(E) approaches a nonzero constant as E → En, to the present case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.