Article contents
Spectra of a class of non-symmetric operators in Hilbert spaces with applications to singular differential operators
Published online by Cambridge University Press: 15 February 2019
Abstract
This paper is concerned with a class of non-symmetric operators, that is, 𝒥-symmetric operators, in Hilbert spaces. A sufficient condition for λ ∈ C being an element of the essential spectrum of a 𝒥-symmetric operator is given in terms of the number of linearly independent solutions of a certain homogeneous equation, and a characterization for points of the essential spectrum plus the set of all eigenvalues of a 𝒥-symmetric operator is obtained in terms of the numbers of linearly independent solutions of certain inhomogeneous equations. As direct applications, the corresponding results are obtained for singular 𝒥-symmetric Hamiltonian systems and their special forms of singular Sturm-Liouville equations with complex-valued coefficients, which enable us to study the spectra of singular 𝒥-symmetric differential expressions using numerous tools available in the fundamental theory of differential equations.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 150 , Issue 4 , August 2020 , pp. 1769 - 1790
- Copyright
- Copyright © Royal Society of Edinburgh 2019
References
- 1
- Cited by