We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the efficacy and safety of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus on different echocardiographic parameters, electrocardiographic parameter, lipid profile, and carotid intima–media thickness.
Methods:
This randomised controlled trial was conducted on 100 children with type 1 diabetes mellitus for more than 3 years during the period from September 2018 to June 2020. Fifty healthy children of matched age and sex served as a control group. The patients were randomly assigned into four groups (25 children each): no-treatment group who received no cardioprotective drug, simvastatin group who received simvastatin (10–20 mg/day), captopril group who received captopril (0.2 mg/kg/day), and L-carnitine group who received L-carnitine (50 mg/kg/day) for 4 months. Lipid profile, serum troponin I, carotid intima–media thickness, and echocardiographic examinations were performed on all included children before and after the treatment.
Results:
Total cholesterol and low-density lipoprotein were significantly decreased in children who received simvastatin or L-carnitine. Triglycerides significantly decreased only in children who received simvastatin. High-density lipoprotein significantly increased in simvastatin and L-carnitine groups only. Serum troponin I decreased significantly in all the three treatment groups. Carotid intima–media thickness showed no significant change in all treatment groups. Echocardiographic parameters significantly improved in simvastatin, L-carnitine, and captopril groups.
Conclusion:
Captopril, simvastatin, and L-carnitine have a significant beneficial effect on cardiac functions in children with type 1 diabetes mellitus. However, only simvastatin and L-carnitine have a beneficial effect on the lipid profile. The drugs were safe and well tolerated.
Clinical trial registration: The clinical trial was registered at www.clinicaltrial.gov (NCT03660293).
To detect early left ventricular dysfunction in children with non-alcoholic fatty liver disease using three-dimensional speckle tracking echocardiography.
Methods:
Forty obese children with non-alcoholic fatty liver disease were included as group I. Another 40 obese children without non-alcoholic fatty liver disease of matched age, sex, and weight were included as group II. Forty healthy controls of matched age and sex served as a control group. Anthropometric measurements, laboratory investigations, and echocardiographic examinations including three-dimensional speckle tracking echocardiography were measured for all included children.
Results:
Abnormal lipid profile was detected in children with non-alcoholic fatty liver disease. Troponin I levels were significantly higher in children with non-alcoholic fatty liver disease compared to obese children without non-alcoholic fatty liver disease and to healthy controls. Three-dimensional speckle tracking echocardiography examination revealed a significant reduction of left ventricular global longitudinal strain, circumferential strain, radial strain, and area strain in children with non-alcoholic fatty liver disease inspite of normal left ventricular fraction shortening measured by conventional echocardiography. All strains were negatively correlated with the grade of non-alcoholic fatty liver disease.
Conclusion:
Non-alcoholic fatty liver disease is associated with subclinical left ventricular dysfunction. Three-dimensional speckle tracking echocardiography can be helpful in identifying early left ventricular dysfunction in children with non-alcoholic fatty liver disease even in the presence of normal left ventricular ejection fraction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.