This note proves that if 1 ≤ p < ∞ and 1 − 1/p < k < 2 − 1/p then the space of sequences strongly Riesz summable [R, λ, k]p to 0 has AK. Using general results of Jakimovski and Russell it is then possible to deduce a best possible limitation condition and a convergence factor result for [R, λ, k]p.