We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for $\mathrm {C}^*$-algebras with the global Glimm property, the rank of every operator can be realized as the rank of a soft operator, that is, an element whose hereditary sub-$\mathrm {C}^*$-algebra has no nonzero, unital quotients. This implies that the radius of comparison of such a $\mathrm {C}^*$-algebra is determined by the soft part of its Cuntz semigroup.
Under a mild additional assumption, we show that every Cuntz class dominates a (unique) largest soft Cuntz class. This defines a retract from the Cuntz semigroup onto its soft part, and it follows that the covering dimensions of these semigroups differ by at most $1$.
We introduce and study the weak Glimm property for $\mathrm{C}^{*}$-algebras, and also a property we shall call (HS$_0$). We show that the properties of being nowhere scattered and residual (HS$_0$) are equivalent for any $\mathrm{C}^{*}$-algebra. Also, for a $\mathrm{C}^{*}$-algebra with the weak Glimm property, the properties of being purely infinite and weakly purely infinite are equivalent. It follows that for a $\mathrm{C}^{*}$-algebra with the weak Glimm property such that the absolute value of every nonzero, square-zero, element is properly infinite, the properties of being (weakly, locally) purely infinite, nowhere scattered, residual (HS$_0$), residual (HS$_{\text {t}}$), and residual (HI) are all equivalent, and are equivalent to the global Glimm property. This gives a partial affirmative answer to the global Glimm problem, as well as certain open questions raised by Kirchberg and Rørdam.
We consider the homology theory of étale groupoids introduced by Crainic and Moerdijk [A homology theory for étale groupoids. J. Reine Angew. Math.521 (2000), 25–46], with particular interest to groupoids arising from topological dynamical systems. We prove a Künneth formula for products of groupoids and a Poincaré-duality type result for principal groupoids whose orbits are copies of an Euclidean space. We conclude with a few example computations for systems associated to nilpotent groups such as self-similar actions, and we generalize previous homological calculations by Burke and Putnam for systems which are analogues of solenoids arising from algebraic numbers. For the latter systems, we prove the HK conjecture, even when the resulting groupoid is not ample.
The action on the trace space induced by a generic automorphism of a suitable finite classifiable
${\mathrm {C}^*}$
-algebra is shown to be chaotic and weakly mixing. Model
${\mathrm {C}^*}$
-algebras are constructed to observe the central limit theorem and other statistical features of strongly chaotic tracial actions. Genericity of finite Rokhlin dimension is used to describe
$KK$
-contractible stably projectionless
${\mathrm {C}^*}$
-algebras as crossed products.
We provide an abstract characterization for the Cuntz semigroup of unital commutative AI-algebras, as well as a characterization for abstract Cuntz semigroups of the form $\operatorname {\mathrm {Lsc}} (X,\overline {\mathbb {N}})$ for some $T_1$-space X. In our investigations, we also uncover new properties that the Cuntz semigroup of all AI-algebras satisfies.
We compute the generator rank of a subhomogeneous $C^*\!$-algebra in terms of the covering dimension of the pieces of its primitive ideal space corresponding to irreducible representations of a fixed dimension. We deduce that every $\mathcal {Z}$-stable approximately subhomogeneous algebra has generator rank one, which means that a generic element in such an algebra is a generator.
This leads to a strong solution of the generator problem for classifiable, simple, nuclear $C^*\!$-algebras: a generic element in each such algebra is a generator. Examples of Villadsen show that this is not the case for all separable, simple, nuclear $C^*\!$-algebras.
We show that the properties of being rationally K-stable passes from the fibres of a continuous $C(X)$-algebra to the ambient algebra, under the assumption that the underlying space X is compact, metrizable, and of finite covering dimension. As an application, we show that a crossed product C*-algebra is (rationally) K-stable provided the underlying C*-algebra is (rationally) K-stable, and the action has finite Rokhlin dimension with commuting towers.
We examine a semigroup analogue of the Kumjian–Renault representation of C*-algebras with Cartan subalgebras on twisted groupoids. Specifically, we represent semigroups with distinguished normal subsemigroups as ‘slice-sections’ of groupoid bundles.
Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid C
$^*$
-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to topological dynamics and discuss the HK conjecture of Matui.
We completely classify Cartan subalgebras of dimension drop algebras with coprime parameters. More generally, we classify Cartan subalgebras of arbitrary stabilised dimension drop algebras that are non-degenerate in the sense that the dimensions of their fibres in the endpoints are maximal. Conjugacy classes by an automorphism are parametrised by certain congruence classes of matrices over the natural numbers with prescribed row and column sums. In particular, each dimension drop algebra admits only finitely many non-degenerate Cartan subalgebras up to conjugacy. As a consequence of this parametrisation, we can provide examples of subhomogeneous $\text{C}^{\ast }$-algebras with exactly $n$ Cartan subalgebras up to conjugacy. Moreover, we show that in many dimension drop algebras two Cartan subalgebras are conjugate if and only if their spectra are homeomorphic.
We examine the ranks of operators in semi-finite ${{C}^{*}}$-algebras as measured by their densely defined lower semicontinuous traces. We first prove that a unital simple ${{C}^{*}}$-algebra whose extreme tracial boundary is nonempty and finite contains positive operators of every possible rank, independent of the property of strict comparison. We then turn to nonunital simple algebras and establish criteria that imply that the Cuntz semigroup is recovered functorially from the Murray–von Neumann semigroup and the space of densely defined lower semicontinuous traces. Finally, we prove that these criteria are satisfied by not-necessarily-unital approximately subhomogeneous algebras of slow dimension growth. Combined with results of the first author, this shows that slow dimension growth coincides with $Z$-stability for approximately subhomogeneous algebras.
In this paper, we solve a question of Simon Wassermann, whether the Calkin algebra can be written as a C*-tensor product of two infinite dimensional C*-algebras. More generally, we show that there is no surjective *-homomorphism from a SAW*-algebra onto C*-tensor product of two infinite dimensional C*-algebras.
We discuss the analytic aspects of the geometric model for K-homology with coefficients in ℤ/kℤ constructed in [12]. In particular, using results of Rosenberg and Schochet, we construct a map from this geometric model to its analytic counterpart. Moreover, we show that this map is an isomorphism in the case of a finite CW-complex. The relationship between this map and the Freed-Melrose index theorem is also discussed. Many of these results are analogous to those of Baum and Douglas in the case of spinc manifolds, geometric K-homology, and Atiyah-Singer index theorem.
The Jiang–Su algebra $Z$ has come to prominence in the classification program for nuclear ${{C}^{*}}$-algebras of late, due primarily to the fact that Elliott’s classification conjecture in its strongest form predicts that all simple, separable, and nuclear ${{C}^{*}}$-algebras with unperforated $\text{K}$-theory will absorb $Z$ tensorially, i.e., will be $Z$-stable. There exist counterexamples which suggest that the conjecture will only hold for simple, nuclear, separable and $Z$-stable ${{C}^{*}}$-algebras. We prove that virtually all classes of nuclear ${{C}^{*}}$-algebras for which the Elliott conjecture has been confirmed so far consist of $Z$-stable ${{C}^{*}}$-algebras. This follows in large part from the following result, also proved herein: separable and approximately divisible ${{C}^{*}}$-algebras are $Z$-stable.
Let $A$ be a stable, separable, real rank zero ${{C}^{*}}$-algebra, and suppose that $A$ has an AF-skeleton with only finitely many extreme traces. Then the corona algebra $\mathcal{M}\left( A \right)/A$ is purely infinite in the sense of Kirchberg and Rørdam, which implies that $A$ has the corona factorization property.
We show that, if $A$ is a separable simple unital $C^{*}$-algebra that absorbs the Jiang–Su algebra ${{\mathcal Z}}$ tensorially and that has real rank zero and finite decomposition rank, then $A$ is tracially approximately finite-dimensional in the sense of Lin, without any restriction on the tracial state space. As a consequence, the Elliott conjecture is true for the class of $C^{*}$-algebras as above that, additionally, satisfy the universal coefficients theorem. In particular, such algebras are completely determined by their ordered $K$-theory. They are approximately homogeneous of topological dimension less than or equal to three, approximately subhomogeneous of topological dimension at most two and their decomposition rank also is no greater than two.
We analyze the decomposition rank (a notion of covering dimension for nuclear C*-algebras introduced by E. Kirchberg and the author) of subhomogeneous C*-algebras. In particular, we show that a subhomogeneous C*-algebra has decomposition rank $n$ if and only if it is recursive subhomogeneous of topological dimension $n$, and that $n$ is determined by the primitive ideal space.
As an application, we use recent results of Q. Lin and N. C. Phillips to show the following. Let $A$ be the crossed product C*-algebra coming from a compact smooth manifold and a minimal diffeomorphism. Then the decomposition rank of $A$ is dominated by the covering dimension of the underlying manifold.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.