We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalize a classical extension result by Seeley in the context of Bastiani’s differential calculus to infinite dimensions. The construction follows Seeley’s original approach, but is significantly more involved as not only
$C^k$
-maps (for ) on (subsets of) half spaces are extended, but also continuous extensions of their differentials to some given piece of boundary of the domains under consideration. A further feature of the generalization is that we construct families of extension operators (instead of only one single extension operator) that fulfill certain compatibility (and continuity) conditions. Various applications are discussed as well.
This paper is devoted to the study of the normal (tangential) regularity of a closed set and the subdifferential (directional) regularity of its distance function in the context of Riemannian manifolds. The Clarke, Fréchet and proximal subdifferentials of the distance function from a closed subset in a Riemannian manifold are represented by corresponding normal cones of the set.
We establish an extension of the Banach–Stone theorem to a class of isomorphisms more general than isometries in a noncompact framework. Some applications are given. In particular, we give a canonical representation of some (not necessarily linear) operators between products of function spaces. Our results are established for an abstract class of function spaces included in the space of all continuous and bounded functions defined on a complete metric space.
We give a multidirectional mean value inequality with second order information. This result extends the classical Clarke-Ledyaev's inequality to the second order. As application, we give the uniqueness of viscosity solution of second order Hamilton-Jacobi equations in finite dimensions.
This paper studies the integration of inclusion of subdifferentials. Under various verifiable conditions, we obtain that if two proper lower semicontinuous functions $f$ and $g$ have the subdifferential of $f$ included in the $\gamma $-enlargement of the subdifferential of $g$, then the difference of those functions is $\gamma $-Lipschitz over their effective domain.
We prove that a Banach space $X$ has the Schur property if and only if every $X$-valued weakly differentiable function is Fréchet differentiable. We give a general result on the Fréchet differentiability of $f\,\circ \,T$, where $f$ is a Lipschitz function and $T$ is a compact linear operator. Finally we study, using in particular a smooth variational principle, the differentiability of the semi norm ${{\left\| {} \right\|}_{\text{lip}}}$ on various spaces of Lipschitz functions.
Formulas for the Clarke subdifferential are always expressed in the form of inclusion. The equality form in these formulas generally requires the functions to be directionally regular. This paper studies the directional regularity of the general class of extended-real-valued functions that are directionally Lipschitzian. Connections with the concept of subdifferential regularity are also established.
In this paper we establish conditions that guarantee, in the setting of a general Banach space, the Painlevé-Kuratowski convergence of the graphs of the subdifferentials of convexly composite functions. We also provide applications to the convergence of multipliers of families of constrained optimization problems and to the generalized second-order derivability of convexly composite functions.
We develop a method of separable reduction for Fréchet-like normals and $\epsilon$-normals to arbitrary sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable subspace admits a Fréchet smooth renorm. As an applicaton of the separable reduction method in Asplund spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theorem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of $\epsilon$-normals.
We study classes of Banach spaces where every set-valued mapping from a complete metric space into subsets of the Banach space which satisfies certain minimal properties, is single-valued and norm upper semi-continuous at the points of a dense Gδ subset of its domain. Characterisations of these classes are developed and permanence properties are established. Sufficiency conditions for membership of these classes are defined in terms of fragmentability and σ-fragmentability of the weak topology. A characterisation of non membership is used to show that l∞ (N) is not a member of our classe of generic continuity spaces.
This paper is devoted to extending formulas for the geometric approximate subdifferential and the Clarke subdifferential of extended-real-valued functions on Banach spaces. The results are strong enough to include completely the finite dimensional setting.
Given a free ideal J of subsets of a set X, we consider games where player ONE plays an increasing sequence of elements of the σ-completion of J, and player TWO tries to cover the union of this sequence by playing one set at a time from J. We describe various conditions under which player TWO has a winning strategy that uses only information about the most recent k moves of ONE, and apply some of these results to the Banach-Mazurgame.
We study the relationships between Gateaux, Fréchet and weak Hadamard differentiability of convex functions and of equivalent norms. As a consequence we provide related characterizations of infinite dimensional Banach spaces and of Banach spaces containing ł1. Explicit examples are given. Some renormings of WCG Asplund spaces are made in this vein.
When an optimization problem is represented by its essential objective function, which incorporates constraints through infinite penalties, first- and secondorder conditions for optimality can be stated in terms of the first- and second-order epi-derivatives of that function. Such derivatives also are the key to the formulation of subproblems determining the response of a problem's solution when the data values on which the problem depends are perturbed. It is vital for such reasons to have available a calculus of epi-derivatives. This paper builds on a central case already understood, where the essential objective function is the composite of a convex function and a smooth mapping with certain qualifications, in order to develop differentiation rules covering operations such as addition of functions and a more general form of composition. Classes of "amenable" functions are introduced to mark out territory in which this sharper form of nonsmooth analysis can be carried out.
In this paper we tackle the problem of identifying set-valued mappings that are subgradient set-valued mappings. We show that a set-valued mapping is the proximal subgradient mapping of a lower semicontinuous function bounded below by a quadratic if and only if it satisfies a monotone selection property.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.