Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T18:35:12.806Z Has data issue: false hasContentIssue false

ON THE REGULARITY OF SETS IN RIEMANNIAN MANIFOLDS

Published online by Cambridge University Press:  18 March 2020

A. SEPAHVAND
Affiliation:
Department of Mathematics, Lorestan University, P. O. Box 465, Khoramabad, Iran
A. BARANI*
Affiliation:
Department of Mathematics, Lorestan University, P. O. Box 465, Khoramabad, Iran e-mail: sepahvand.ami@fs.lu.ac.ir

Abstract

This paper is devoted to the study of the normal (tangential) regularity of a closed set and the subdifferential (directional) regularity of its distance function in the context of Riemannian manifolds. The Clarke, Fréchet and proximal subdifferentials of the distance function from a closed subset in a Riemannian manifold are represented by corresponding normal cones of the set.

Type
Research Article
Copyright
© 2020 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by W. Moors

References

Aubin, J.-P. and Frankowska, H., Set-Valued Analysis (Birkhäuser, Boston, 2009).Google Scholar
Azagra, D. and Ferrera, J., ‘Proximal calculus on Riemannian manifolds’, Mediterr. J. Math. 2(4) (2005), 437450.Google Scholar
Azagra, D., Ferrera, J. and López-Mesas, F., ‘Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds’, J. Funct. Anal. 220(2) (2005), 304361.Google Scholar
Barani, A., ‘Hermite–Hadamard and Ostrowski type inequalities on hemispheres’, Mediterr. J. Math. 13(6) (2016), 42534263.Google Scholar
Barani, A., ‘Subdifferentials of perturbed distance function in Riemannian manifolds’, Optimization 67(11) (2018), 18491868.Google Scholar
Barani, A., Hosseini, S. and Pouryayevali, M. R., ‘On the metric projection onto 𝜑-convex subsets of Hadamard manifolds’, Rev. Mat. Complut. 26(2) (2013), 815826.Google Scholar
Bernicot, F. and Venel, J., ‘Sweeping process by prox-regular sets in Riemannian Hilbert manifolds’, J. Differential Equations 259(8) (2015), 40864121.Google Scholar
Bounkhel, M. and Thibault, L., ‘On various notions of regularity of sets in nonsmooth analysis’, Nonlinear Anal. 48(2) (2002), 223246.Google Scholar
Burke, J. V., Ferris, M. C. and Qian, M., ‘On the Clarke subdifferential of the distance function of a closed set’, J. Math. Anal. Appl. 166(1) (1992), 199213.Google Scholar
Clarke, F. H., Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, 5 (SIAM, Philadelphia, 1990).Google Scholar
Clarke, F. H., Ledyaev, Y. S., Stern, R. J. and Wolenski, P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178 (Springer, New York, 2008).Google Scholar
Colombo, G. and Goncharov, V. V., ‘Variational inequalities and regularity properties of closed sets in Hilbert spaces’, J. Convex Anal. 8(1) (2001), 197222.Google Scholar
Ferreira, O. P., ‘Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds’, J. Math. Anal. Appl. 313(2) (2006), 587597.Google Scholar
Ferreira, O. P., ‘Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds’, Nonlinear Anal. Theory Methods Appl. 68(6) (2008), 15171528.Google Scholar
Ghahraei, E., Hosseini, S. and Pouryayevali, M. R., ‘Pseudo-Jacobian and characterization of monotone vector fields on Riemannian manifolds’, J. Convex Anal. 24(1) (2017), 149168.Google Scholar
Hosseini, S., ‘Characterization of lower semicontinuous convex functions on Riemannian manifolds’, Set-Valued Var. Anal. 25(2) (2017), 297311.Google Scholar
Hosseini, S. and Pouryayevali, M. R., ‘Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds’, Nonlinear Anal. Theory Methods Appl. 74(12) (2011), 38843895.Google Scholar
Hosseini, S. and Pouryayevali, M. R., ‘On the metric projection onto prox-regular subsets of Riemannian manifolds’, Proc. Amer. Math. Soc. 141(1) (2013), 233244.Google Scholar
Khajehpour, S. and Pouryayevali, M. R., ‘Convexity of the distance function to convex subsets of Riemannian manifolds’, J. Convex Anal. 26(4) (2019), 13211336.Google Scholar
Kristály, A., ‘Nash-type equilibria on Riemannian manifolds’, Science Direct 101(5) (2014), 660688.Google Scholar
Lang, S., Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191 (Springer, New York, 2012).Google Scholar
Ledyaev, Y. and Zhu, Q., ‘Nonsmooth analysis on smooth manifolds’, Trans. Amer. Math. Soc. 359(8) (2007), 36873732.Google Scholar
Li, C., Mordukhovich, B. S., Wang, J. and Yao, J.-C., ‘Weak sharp minima on Riemannian manifolds’, SIAM J. Optim. 21(4) (2011), 15231560.Google Scholar
Mantegazza, C. and Mennucci, A. C., ‘Hamilton–Jacobi equations and distance functions on Riemannian manifolds’, Appl. Math. Optim. 47(1) (2002), 125.Google Scholar
Mordukhovich, B. S., Variational Analysis and Generalized Differentiation I: Basic Theory (Springer, Berlin, 2006).Google Scholar
Neto, J. D. C., Ferreira, O. P., Pérez, L. R. L. and Németh, S. Z., ‘Convex- and monotone-transformable mathematical programming problems and a proximal-like point method’, J. Global Optim. 35(1) (2006), 5369.Google Scholar
Pouryayevali, M. R. and Radmanesh, H., ‘Sets with the unique footpoint property and phi-convex subsets of Riemannian manifolds’, J. Convex Anal. 26(2) (2019), 617633.Google Scholar
Rockafellar, R. T. and Wets, R. J.-B., Variational Analysis, Grundlehren der Mathematischen Wissenschaften, 317 (Springer, Berlin, 2009).Google Scholar
Sakai, T., Riemannian Geometry (American Mathematical Society, Providence, RI, 1996).Google Scholar
Thorpe, J. A., Elementary Topics in Differential Geometry (Springer, New York, 1979).Google Scholar
Udriste, C., Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297 (Kluwer, Dordrecht, 1994).Google Scholar