We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by the Landau–Ginzburg model, we study the Witten deformation on a noncompact manifold with bounded geometry, together with some tameness condition on the growth of the Morse function f near infinity. We prove that the cohomology of the Witten deformation
$d_{Tf}$
acting on the complex of smooth
$L^2$
forms is isomorphic to the cohomology of the Thom–Smale complex of f as well as the relative cohomology of a certain pair
$(M, U)$
for sufficiently large T. We establish an Agmon estimate for eigenforms of the Witten Laplacian which plays an essential role in identifying these cohomologies via Witten’s instanton complex, defined in terms of eigenspaces of the Witten Laplacian for small eigenvalues. As an application, we obtain the strong Morse inequalities in this setting.
This paper deals with the analytic solvability of a special class of complex vector fields defined on the real plane, where they are tangent to a closed real curve, while off the real curve, they are elliptic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.