We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is limited data on the utility, yield, and cost efficiency of genetic testing in adults with epilepsy. We aimed to describe the yield and utility of genetic panels in our adult epilepsy clinic.
Methods:
We performed a retrospective, cross-sectional study of all patients followed by an epileptologist at a Canadian tertiary care centre’s epilepsy clinic between January 2016 and August 2021 for whom a genetic panel was ordered. A panel was generally ordered when the etiology was unknown or in the presence of a malformation of cortical development. We determined the yield of panel positivity and of confirmed genetic diagnoses. We also estimated the proportion of these diagnoses that were clinically actionable.
Results:
In total, 164 panels were ordered in 164 patients. Most had refractory epilepsy (80%), and few had comorbid intellectual disability (10%) or a positive family history of epilepsy (11%). The yield of panel positivity was 11%. Panel results were uncertain 49% of the time and negative 40% of the time. Genetic diagnoses were confirmed in 7 (4.3%) patients. These genetic conditions involved the following genes: SCARB2, DEPDC5, PCDH19, LGI1, SCN1A, MT-TL1, and CHRNA7. Of the seven genetic diagnoses, 5 (71%) were evaluated to be clinically actionable.
Conclusion:
We report a lower diagnostic yield for genetic panels in adults with epilepsy than what has so far been reported. Although the field of the genetics of epilepsy is a fast-moving one and more data is required, our findings suggest that guidelines for genetic testing in adults are warranted.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.