We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Anosov automorphisms with Jordan blocks are not periodic data rigid. We introduce a refinement of the periodic data and show that this refined periodic data characterizes $C^{1+}$ conjugacy for Anosov automorphisms on $\mathbb {T}^4$ with a Jordan block.
For $\unicode{x3bb}>1$, we consider the locally free ${\mathbb Z}\ltimes _\unicode{x3bb} \mathbb R$ actions on $\mathbb T^2$. We show that if the action is $C^r$ with $r\geq 2$, then it is $C^{r-\epsilon }$-conjugate to an affine action generated by a hyperbolic automorphism and a linear translation flow along the expanding eigen-direction of the automorphism. In contrast, there exists a $C^{1+\alpha }$-action which is semi-conjugate, but not topologically conjugate to an affine action.
In this paper, we study the centralizer of a partially hyperbolic diffeomorphism on
${\mathbb T}^3$
which is homotopic to an Anosov automorphism, and we show that either its centralizer is virtually trivial or such diffeomorphism is smoothly conjugate to its linear part.
We consider a smooth area-preserving Anosov diffeomorphism
$f\colon \mathbb T^2\rightarrow \mathbb T^2$
homotopic to an Anosov automorphism L of
$\mathbb T^2$
. It is known that the positive Lyapunov exponent of f with respect to the normalized Lebesgue measure is less than or equal to the topological entropy of L, which, in addition, is less than or equal to the Lyapunov exponent of f with respect to the probability measure of maximal entropy. Moreover, the equalities only occur simultaneously. We show that these are the only restrictions on these two dynamical invariants.
We show that various classes of products of manifolds do not support transitive Anosov diffeomorphisms. Exploiting the Ruelle–Sullivan cohomology class, we prove that the product of a negatively curved manifold with a rational homology sphere does not support transitive Anosov diffeomorphisms. We extend this result to products of finitely many negatively curved manifolds of dimension at least three with a rational homology sphere that has vanishing simplicial volume. As an application of this study, we obtain new examples of manifolds that do not support transitive Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups and certain products of aspherical manifolds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.