An electromechanical coupling model is established for the space-tethered combination (STC) under microgravity environment after target capture by the tethered robot system (TRS). A linearized dynamic model of the STC is put forward with its controllability and observability as a control system analyzed. A double closed-loop tension control strategy is proposed to mitigate the impact and suing longitudinal vibration caused by the velocity difference between the platform and target. Experiment setup is built on a ground-based flotation platform to investigate the impact of the STC. Results of simulation and experimental validation show that the proposed tension control strategy is responsive and rapid in tension tracking and effectively prevent impact.