We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini–Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the Kähler–Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.
We consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the $q$-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprising divisors arising in the recent work of Kudla and Rapoport regarding cycles on Shimura varieties of unitary type. In the prequel to this paper, the author considered the geometry of the two families of cycles. These results are combined with the Archimedean calculations found in this work in order to establish the theorem. In particular, we obtain new examples of modular generating series whose coefficients lie in arithmetic Chow groups of Shimura varieties.
We develop a theory of abstract arithmetic Chow rings, where the role of the fibres at infinity is played by a complex of abelian groups that computes a suitable cohomology theory. As particular cases of this formalism we recover the original arithmetic intersection theory of Gillet and Soulé for projective varieties. We introduce a theory of arithmetic Chow groups, which are covariant with respect to arbitrary proper morphisms, and we develop a theory of arithmetic Chow rings using a complex of differential forms with log-log singularities along a fixed normal crossing divisor. This last theory is suitable for the study of automorphic line bundles. In particular, we generalize the classical Faltings height with respect to logarithmically singular hermitian line bundles to higher dimensional cycles. As an application we compute the Faltings height of Hecke correspondences on a product of modular curves.
The purpose of this note is to present a somewhat unexpected relation between diophantine approximations and the geometric invariant theory. The link is given by Mumford's degree of contact. We show that destabilizing flags of Chow-unstable projective varieties provide systems of diophantine approximations which are better than those given by Schmidt's subspace theorem, and we give examples of these systems.
Let $K$ be a function field and $C$ a non-isotrivial curve of genus $g\geqslant 2$ over $K$. In this paper, we will show that if $C$ has a global stable model with only geometrically irreducible fibers, then Bogomolov conjecture over function fields holds.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.