We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$, there is a forcing extension in which ${A = \{ n :\, \text {there is a partition of } {{\mathbb R}} \text { into }\aleph _n\text { Borel sets}\}}$. We also look at the corresponding question for partitions of ${\mathbb R}$ into closed sets. We show that, like with partitions into Borel sets, the set of all uncountable $\kappa $ such that there is a partition of ${\mathbb R}$ into precisely $\kappa $ closed sets can be fairly arbitrary.
Outer, Inner, and Lebesgue Measure are defined and systematically studied; first for (n-dimensional) intervals, then for finite and countable union of intervals, then for open and closed sets, and finally for general Lebesgue Measurable sets in Euclidean Spaces. The Approximation Theorem and the Caratheodory Characterization of Measurability are proven. Borel sets are studied and examples are given of Nonmeasurable Sets, as well as Measurable Sets which are not Borel.
We define the notion of a completely determined Borel code in reverse mathematics, and consider the principle $CD - PB$, which states that every completely determined Borel set has the property of Baire. We show that this principle is strictly weaker than $AT{R_0}$. Any ω-model of $CD - PB$ must be closed under hyperarithmetic reduction, but $CD - PB$ is not a theory of hyperarithmetic analysis. We show that whenever $M \subseteq {2^\omega }$ is the second-order part of an ω-model of $CD - PB$, then for every $Z \in M$, there is a $G \in M$ such that G is ${\rm{\Delta }}_1^1$-generic relative to Z.
The following will be shown: Let I be a σ-ideal on a Polish space X so that the associated forcing of I+${\bf{\Delta }}_1^1$ sets ordered by ⊆ is a proper forcing. Let E be a ${\bf{\Sigma }}_1^1$ or a ${\bf{\Pi }}_1^1$ equivalence relation on X with all equivalence classes ${\bf{\Delta }}_1^1$. If for all $z \in {H_{{{\left( {{2^{{\aleph _0}}}} \right)}^ + }}}$, z♯ exists, then there exists an I+${\bf{\Delta }}_1^1$ set C ⊆ X such that E ↾ C is a ${\bf{\Delta }}_1^1$ equivalence relation.
We show that for an uncountable κ in a suitable Cohen real model for any family {Av}v<κ of sets of reals there is a σ-homomorphism h from the σ-algebra generated by Borel sets and the sets Av, into the algebra of Baire subsets of 2κ modulo meager sets such that for all Borel B,
The proof is uniform, works also for random reals and the Lebesgue measure, and in this way generalizes previous results of Carlson and Solovay for the Lebesgue measure and of Kamburelis and Zakrzewski for the Baire property.
A certain natural extension B of the Borel σ-algebra is studied in generalized weakly θ-refinable spaces. It is shown that a set belongs to B whenever it belongs to B locally. From this it is derived that if ℵωα is more complicated than aunion of less than ℵα weakly θ-refinable subspaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.