Zr-rich pyrochlore crystals in carbonatite from San Vicente (Cape Verdes Islands) show cryptic, concentric and rhythmic chemical zonation with Ca increasing and Ti, U and Zr decreasing towards the rims. In one carbonatite, taken from the Camile dyke, previously undocumented cryptic sector zonation of Ti, U and Zr is also observed in these crystals. The chemical variation is investigated by wavelength-dispersive electron microprobe, with both single spot and crystal map analyses.
The concentric and rhythmic zonation, marked by element substitution, was generated by magma heterogeneity and/or element diffusion kinetics, but it is suggested that the sector zonation, marked by differential site substitution, was governed by protosite variation between octahedral and cubic faces.