Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:29:53.403Z Has data issue: false hasContentIssue false

The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands

Published online by Cambridge University Press:  05 July 2018

N. A. Hodgson
Affiliation:
Department of Geology, Leicester University, Leicester LE1 7RH
M. J. Le Bas
Affiliation:
Department of Geology, Leicester University, Leicester LE1 7RH

Abstract

Zr-rich pyrochlore crystals in carbonatite from San Vicente (Cape Verdes Islands) show cryptic, concentric and rhythmic chemical zonation with Ca increasing and Ti, U and Zr decreasing towards the rims. In one carbonatite, taken from the Camile dyke, previously undocumented cryptic sector zonation of Ti, U and Zr is also observed in these crystals. The chemical variation is investigated by wavelength-dispersive electron microprobe, with both single spot and crystal map analyses.

The concentric and rhythmic zonation, marked by element substitution, was generated by magma heterogeneity and/or element diffusion kinetics, but it is suggested that the sector zonation, marked by differential site substitution, was governed by protosite variation between octahedral and cubic faces.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: British Gas Corporation, 59 Byranston Street, London W1A 2AZ.

References

Borodin, L. S. and Nazarenko, I. I. (1957) Chemical composition of pyrochlore and diadochic substitu-tions in the A2B2X7 molecule. Geochemistry, 4, 278–95.Google Scholar
Borodin, L. S. and Nazarenko, I. I. Bykova, A. B., Kapitonova, T. A., and Pyatenko, Yu. A. (1960) New data on zirconolite and its niobium variety. Dokl. Acad. Sci. USSR., Earth Sci., 134, 1022–24.Google Scholar
Gold, D. P. (1967) The minerals of the Oka carbonatite and alkaline complex, Oka, Quebec. Proc. 4th Gen. meeting. Intern. Mineral. Assoc. India, 109-25.Google Scholar
Hodgson, N. A. (1985) Carbonatites and associated rocks from the Cape Verde Islands. Ph.D. thesis, University of Leicester.Google Scholar
Hogarth, D. D. (1977) Classification and nomenclature of the pyrochlore group. Am. Mineral., 62, 403–10.Google Scholar
Hogarth, D. D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites: genesis and evolution (Bell, K., ed.). Unwin Hyman, London, 89104.Google Scholar
Kesson, S. E. and Ringwood, A. E. (1981) Immobilization of sodium in SYNROC. Nuclear and Chemical Waste Management, 2, 53–5.CrossRefGoogle Scholar
Knudsen, C. (1989) Pyrochlore group minerals from the Qaqarssuk carbonatite complex. In Lanlhanides, Tantalum and Niobium (Moller, P., Cerny, P., and Saupe, F., eds.), Springer Verlag, 8999.Google Scholar
Kuz'menko, M. V. (1984) Aspects of the systematics and typical chemistry of tantaloniobates of the pyrochlore group. In Tipokhimizm Mineralov Granit-nykh Pegmatitov (Kuz'menko, M. V., ed.), IMGRE, Moscow, 5-32. (in Russian).Google Scholar
Le Bas, M. J. (1984) Oceanic carbonatites. In Kimberlites 1: Kimberlites and related rocks (Kornprobst, J., ed.), Elsevier, Amsterdam, 169-78.CrossRefGoogle Scholar
Lcbcdeva, S. I., Bytov, V. P., Dubakina, L. S., and Yurkina, K. V. (1973) Microprobe determinations of the mode of deposition of trace elements in zircon-bearing pyrochlores and hatchettolites. In Issledova-niya v oblasti rudnoi mineralogii (Bezsmertnaya, M. S., ed.), Nauka, Moscow, 133-45 (in Russian).Google Scholar
McMahon, B. M. and Haggerty, S. E. (1979) Oka carbonatite complex: magnetite compositions and the related roles of titanium in pyrochlore. In Kimberlites, Diatremes and Diamonds: their geology, petrology and geochemistry (Boyd, F. R., Meyer, H. O. A., eds). Am. Geophys. Union. Wash. D.C. 382-92.CrossRefGoogle Scholar
Nakamura, Y. (1973) Origin of sector-zoning of igneous clinopyroxenes. Am. MineraL,, 58, 986–90.Google Scholar
Nakamura, Y. and Coombs, D. S. (1973) Clinopyroxene in the Tawhiroko tholeiitic dolerite at Moeraki, north eastern Otago, New Zealand. Contrib. Mineral. Petrol., 42, 213-28.CrossRefGoogle Scholar
Perrault, G. (1968) La composition chimique et la structure crystalline du pyrochlore d'Oka, P. Q. Can. Mineral., 9, 383402.Google Scholar
Petruk, W. and Owens, D. R. (1975) Electron micro-probe analyses for pyrochlores from Oka, Quebec, ibid., 13, 282-5.Google Scholar
Serralheiro, A. (1968) Formacoes sedimentares do arquipelago de Cabo Verde. Junta de Investigacoes do Ultramar, Lisbon, 22pp.Google Scholar
Silva, L. C. and Figueirdo, M. O. (1980) Note on the occurrence of niobium-rich zirconolite in carbonatitic rocks of Santiago island (Cape Verde Republic). Garcia de Orta, Ser. Geol., 4, 16.Google Scholar
Treiman, A. H. (1989) Carbonatite magma: properties and processes. In Carbonatites: genesis and evolution (Bell, K., ed.). Unwin Hyman, London, 89104.Google Scholar
Treiman, A. H. and Schedl, A. (1983) Properties of carbonatite magma and processes in carbonaiite magma chambers. J. Geol., 91, 437–47.CrossRefGoogle Scholar
Vronskii, A. V. and Basina, V. A. (1963) Use of X-ray photography for the study of zoned pyrochlore. Nauchnye Trudy Irkutskii Gosudarstvennyi Nauchno - Issledovatel'skii lnstitut Redkikh Metallov, 11, 44–7.(in Russian).Google Scholar
Wass, S. Y. (1973) The origin and petrological significance of hour-glass zoning in titaniferous clinopyroxene. Mineral. Mag., 39, 133-44.CrossRefGoogle Scholar
Woolley, A. R. and Kempe, D. R. C. (1989) Carbon-atites: nomenclature, average chemical compositions, and element distributions. In Carbonatites: genesis and evolution (Bell, K., ed.), Unwin Hyman, London, 114.Google Scholar