We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The paediatric cardiac ICU presents unique challenges to optimal communication practices, which may impact participation in medical decision-making and long-term psychosocial outcomes for families. This study characterised parent perceptions of (1) team practices that impeded or facilitated communication and (2) preparation for family meetings with interprofessional care teams during extended cardiac ICU admissions.
Methods:
A purposive sample of parents of children admitted to the cardiac ICU was selected to participate in interviews about their communication experiences. Data were analysed using a grounded theory approach.
Results:
Twenty-three parents of 18 patients participated with an average length of stay of 55 days at the time of interview. Team practices that impeded communication included inaccurate/incomplete communication, inconsistent within team communication/coordination, and feeling overwhelmed by too many team members/questions. Team practices that facilitated communication included valuing parent preferences, provider continuity, explaining jargon, and eliciting questions. Preparation for family meetings included team practices, parental preferences, and experiences when learning about family meetings (including apprehension about meetings). Family meetings were described as valued opportunities to improve communication.
Conclusion:
Communication with medical teams represents a modifiable determinant of long-term outcomes for families of children in the cardiac ICU. When parents are included as valued members of their child’s care team, they are more likely to feel a sense of control over their child’s outcomes, even in the face of prognostic uncertainty. Family meetings represent an important opportunity to repair fractures in trust between families and care teams and overcome barriers to communication between parties.
Paediatric ICUs have shared the burden of the COVID-19 pandemic, including subspecialty cardiac ICUs. We sought to address knowledge gaps regarding patient characteristics, acuity, and sequelae of COVID-19 in the paediatric cardiac ICU setting.
Design:
Retrospective review of paediatric cardiac ICU admissions with COVID-19-related disease.
Setting:
Single centre tertiary care paediatric cardiac ICU.
Patients:
All patients with PCR/antibody evidence of primary COVID-19 infection, and/or Multisystem Inflammatory Syndrome in Children, were admitted between 26 March, 2020 and 31 March, 2021.
Interventions:
None.
Main outcomes measures:
Patient-level demographics, pre-existing conditions, clinical symptoms, and outcomes related to ICU admission were captured from medical records.
Results:
Among 1064 patients hospitalised with COVID-19/Multisystem Inflammatory Syndrome in Children, 102 patients (9.5%) were admitted to cardiac ICU, 76 of which were symptomatic (median age 12.5 years [IQR 7.5–16.0]). The primary system involved at presentation was cardiovascular in 48 (63%). Vasoactive infusions were required in 62% (n = 47), with eight patients (11%) requiring VA ECMO. Severity of disease was categorised as mild/moderate in 16 (21%) and severe/critical in 60 patients (79%). On univariate analysis, African-American race, presentation with gastrointestinal symptoms or elevated inflammatory markers were associated with risk for severe disease. All-cause death was observed in five patients (7%, n = 5/72) with four patients remaining hospitalised at the time of data query.
Conclusion:
COVID-19 and its cardiovascular sequelae were associated with important morbidity and significant mortality in a notable minority of paediatric patients admitted to a paediatric cardiac ICU. Further study is required to quantify the risk of morbidity and mortality for COVID-19 and sequelae.
To determine the Final ICU Need in the 24 hours prior to ICU discharge for children with cardiac disease by utilising a single-centre survey.
Methods:
A cross-sectional survey was utilised to determine Final ICU Need, which was categorised as “Cardiovascular”, “Respiratory”, “Feeding”, “Sedation”, “Systems Issue”, or “Other” for each encounter. Survey responses were obtained from attending physicians who discharged children (≤18 years of age with ICU length of stay >24 hours) from the Cardiac ICU between April 2016 and July 2018.
Measurements and results:
Survey response rate was 99% (n = 1073), with 667 encounters eligible for analysis. “Cardiovascular” (61%) and “Respiratory” (26%) were the most frequently chosen Final ICU Needs. From a multivariable mixed effects logistic regression model fitted to “Cardiovascular” and “Respiratory”, operations with significantly reduced odds of having “Cardiovascular” Final ICU Need included Glenn palliation (p = 0.003), total anomalous pulmonary venous connection repair (p = 0.024), truncus arteriosus repair (p = 0.044), and vascular ring repair (p < 0.001). Short lengths of stay (<7.9 days) had significantly higher odds of “Cardiovascular” Final ICU Need (p < 0.001). “Cardiovascular” and “Respiratory” Final ICU Needs were also associated with provider and ICU discharge season.
Conclusions:
Final ICU Need is a novel metric to identify variations in Cardiac ICU utilisation and clinical trajectories. Final ICU Need was significantly influenced by benchmark operation, length of stay, provider, and season. Future applications of Final ICU Need include targeting quality and research initiatives, calibrating provider and family expectations, and identifying provider-level variability in care processes and mental models.
Chylothorax after paediatric cardiac surgery incurs significant morbidity; however, a detailed understanding that does not rely on single-centre or administrative data is lacking. We described the present clinical epidemiology of postoperative chylothorax and evaluated variation in rates among centres with a multicentre cohort of patients treated in cardiac ICU.
Methods
This was a retrospective cohort study using prospectively collected clinical data from the Pediatric Cardiac Critical Care Consortium registry. All postoperative paediatric cardiac surgical patients admitted from October, 2013 to September, 2015 were included. Risk factors for chylothorax and association with outcomes were evaluated using multivariable logistic or linear regression models, as appropriate, accounting for within-centre clustering using generalised estimating equations.
Results
A total of 4864 surgical hospitalisations from 15 centres were included. Chylothorax occurred in 3.8% (n=185) of hospitalisations. Case-mix-adjusted chylothorax rates varied from 1.5 to 7.6% and were not associated with centre volume. Independent risk factors for chylothorax included age <1 year, non-Caucasian race, single-ventricle physiology, extracardiac anomalies, longer cardiopulmonary bypass time, and thrombosis associated with an upper-extremity central venous line (all p<0.05). Chylothorax was associated with significantly longer duration of postoperative mechanical ventilation, cardiac ICU and hospital length of stay, and higher in-hospital mortality (all p<0.001).
Conclusions
Chylothorax after cardiac surgery in children is associated with significant morbidity and mortality. A five-fold variation in chylothorax rates was observed across centres. Future investigations should identify centres most adept at preventing and managing chylothorax and disseminate best practices.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.