In view of the cooperative guidance problem with time delay, this paper proposes a two-stage time-delay prescribed-time cooperative guidance law in the three-dimensional (3D) space. In the first stage, by introducing a time scaling function and time-delay consensus, the proposed cooperative guidance law can overcome the negative influence of time delay to guaranteed the desired convergence performance. Derived from the Lyapunov convergence analysis, the time-delay stability of the first stage can be ensured and the convergence time can be described as the relationship between delayed time and mission-assigned convergence time. Then, taking the prescribed-time-related convergence time as the switching point, the second stage begins with suitable initial conditions and all interceptors are governed by proportional navigation guidance. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed time-delay guidance law.