Cu(In,Ga)Se2 (CIGS) semiconductors were prepared by arc melting and the vacuum solid reaction. CIGS nanoparticles were synthesized by the mechanical alloy method. The influences of various ball-milling speeds on phase structures for CIGS nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystal structures and unit-cell parameters of CIGS nanoparticles were determined using TREOR program and the least squares method. A Rietveld structural refinement was used to determine the atomic occupations and atomic numbers of CIGS prepared under various ball-milling speeds. The least size of agglomerated CIGS nanoparticles should be around 200 nm. CIGS nanoparticles milled at various milling speeds with a tetragonal chalcopyrite structure were obtained according to XRD analyses. However, Ga content in CIGS depends on milling speeds. Based on the structural refinements, the unit-cell parameters are a = 5.693(8)–5.744(9) Å and c = 11.334(9)–11.524(4) Å with gallium content ranging from 0.3 to 0.5. The atomic occupations are corresponding to the 4a crystal site for Cu atoms, the 4b site for In and the 8d site for Se. Ga prefers to occupy the 4b crystal site.