The Cu-triethylenetetramine-complex (Cutrien) is one of the commonly used index cations for CEC determination in clay science. Cutrien-exchanged smectites show basal spacings between 13.0 and 13.5 Å after correction for the Lorentz and polarization factors. The full width at half maximum (FWHM) of the d001 reflection is today related to the percentage of tetrahedral charge (beidellitic character) and/or to the Fe content of the smectites. The structural Fe content and the tetrahedral charge correlate, so their individual influence on d001 cannot be resolved. Nevertheless, the FWHM of Cutrien smectites should depend on the charge distribution rather than the Fe content.
X-ray diffraction (XRD) and water uptake capacity measurements showed that the interlayer of Cutrien-exchanged smectites does not swell any more, but can take up a few water molecules. Accordingly, the water uptake capacity of the external surface area can be determined independently from the interlayer water uptake capacity. Adjusting the pH of Cutrien-bentonite dispersion to different values allows for the determination of the variable charge.
In conclusion, Cutrien exchange of smectites appears to be suitable for the study of external surfaces area related phenomena (e.g. edge adsorption processes) without any influence of the interlayer region.