Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T04:56:58.420Z Has data issue: false hasContentIssue false

Termination of swelling capacity of smectites by Cutrien exchange

Published online by Cambridge University Press:  09 July 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
K. Ufer
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, 09596 Freiberg, Germany
R. Kleeberg
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, 09596 Freiberg, Germany
H. Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen, Bunsenstr. 8, D-52072 Aachen, Germany

Abstract

The Cu-triethylenetetramine-complex (Cutrien) is one of the commonly used index cations for CEC determination in clay science. Cutrien-exchanged smectites show basal spacings between 13.0 and 13.5 Å after correction for the Lorentz and polarization factors. The full width at half maximum (FWHM) of the d001 reflection is today related to the percentage of tetrahedral charge (beidellitic character) and/or to the Fe content of the smectites. The structural Fe content and the tetrahedral charge correlate, so their individual influence on d001 cannot be resolved. Nevertheless, the FWHM of Cutrien smectites should depend on the charge distribution rather than the Fe content.

X-ray diffraction (XRD) and water uptake capacity measurements showed that the interlayer of Cutrien-exchanged smectites does not swell any more, but can take up a few water molecules. Accordingly, the water uptake capacity of the external surface area can be determined independently from the interlayer water uptake capacity. Adjusting the pH of Cutrien-bentonite dispersion to different values allows for the determination of the variable charge.

In conclusion, Cutrien exchange of smectites appears to be suitable for the study of external surfaces area related phenomena (e.g. edge adsorption processes) without any influence of the interlayer region.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergaya, F. & Vayer, M. (1997) CEC of clays: Measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275280.Google Scholar
Bowman, D.C. (2006) A colourful look at the chelate effect. Journal of Chemical Education, 83, 1158. DOI: 10.1021/ed083pll58.Google Scholar
Buckingham, D.A. & Jones, D. (1965) Infrared spectra of cobalt (III) triethylenetetramine complexes. Inorganic Chemistry, 4, 13871392.Google Scholar
Ciesielski, H. & Sterckeman, T. (1997) Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie, 17, 17.Google Scholar
Dohrmann, R. (2006a) Cation exchange capacity methodology I: An efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results. Applied Clay Science, 34, 3137.Google Scholar
Dohrmann, R. (2006b) Cation exchange capacity methodology II: Proposal for a modified silver-thiourea method. Applied Clay Science, 34, 3846.CrossRefGoogle Scholar
Dohrmann, R. (2006c) Cation exchange capacity methodology III: Correct exchangeable calcium determination of calcareous clays using a new silverthiourea method. Applied Clay Science, 34, 4757.CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E. & Drits, V.A. (2007) Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist, 92, 17311743.Google Scholar
Grygar, T., Kadlec, J., Zigova, A., Mihaljevic, M., Nekutova, T., Lojka, R. & Svetlik, I. (2009) Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu(II) triethylenetetramine. Clays and Clay Minerals, 57, 168182.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfahigkeit yon Lithiumionen an Bentonit durch Erhitzung. Zeitschrift fur anorganische Chernie, 262, 9599.CrossRefGoogle Scholar
Janek, M. & Komadel, P. (1993) Autotransformation of H-smectites in aqueous solution. Geologica Carpathica—Series Clays, 44, S. 59.Google Scholar
Kaufhold, S. & Dohrmann, R. (2003) Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift fur angewandte Geologie, ISSN 0044- 2259, 2/2003, 13-18.Google Scholar
Kaufhold, S. & Dohrmann, R. (2008) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 5059.Google Scholar
Kaufhold, S. & Dohrmann, R. (2009) Stability of bentonites in salt solutions I sodium chloride. Applied Clay Science, 45, 171177.Google Scholar
Kaufhold, S. & Dohrmann, R. (2010) Stability of bentonites in salt solutions II potassium chloride—the initial step of illitiization. Applied Clay Science, 49, 98107.Google Scholar
Kaufhold, S., Dohrmann, R., Ufer, K. & Meyer, F.M. (2002) Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145151.Google Scholar
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343.Google Scholar
Kaufhold, S., Dohrmann, R. & Klinkenberg, M. (2010a) Water uptake capacity of bentonites. Clays and Clay Minerals, 58, 3743.Google Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S. & Ufer K (2010b) The BET surface area of bentonites. Journal of Colloid and Interface Science, 349, 275282.Google Scholar
Kaufhold, S., Dohrmann, R., Stucki, J.W. & Anastacio, A.S. (2011) Layer charge density of smectites—closing the gap between the structural formula method and the alkyl ammonium method. Clays and Clay Minerals, 59, 200211.Google Scholar
Keramidas, K.G. & Rentzeperis, P.I. (1992) The crystal structure of triethylenetetramine copper(II)fluorophosphate, Cu(trien)(PF6)2. Zeitschrift fur Kristallographie, 201, 171176.Google Scholar
Kirk-Othmer (1965) Encyclopedia of Chemical Technology, 2nd edition, 6, 23. John Wiley & Sons, Inc.Google Scholar
Mantin, I. (1969) Mesure de la capacité d'échange des minéraux argileux par l'éthylène diamine et les ions complexes de l'éthylène diamine. Comptes Rendus de VAcademie des Sciences de Paris, Serie D, 269, 815818.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with triethylenetetramine and tretraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Stanjek, H. & Friedrich, R. (1986) The determination of layer charge by curve fitting of Lorentz- and polarization-corrected X-ray diagrams. Clay Minerals, 21, 183190.Google Scholar
Steudel, A., Weidler, P.G., Schuhmann, R. & Emmerich, K. (2009) Cation exchange reactions of vermiculite with Cu-triethylenetetramine as affected by mechanical and chemical pretreatment. Clays and Clay Minerals, 57, 486493.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.Google Scholar