With the aid of the Green's function method and complex function method, the scattering problem of SH-wave by a cylindrical inclusion and a semi-cylindrical hollow in the bi-material half space is considered to obtain the steady state response. Firstly, by the means of the image method, the essential solution of displacement field as well as Green's function is constructed which satisfies the stress free on the horizontal boundary in a right-angle space including a cylindrical inclusion and a semi-cylindrical hollow and bearing a harmonic out-plane line source force at any point on the vertical boundary. Secondly, the bi-material half space is divided into two parts along the vertical interface, and the first kind of Fredholm integral equations containing undetermined anti-plane forces at the linking section is established by “the conjunction method” and “the crack-division method”, the integral equations are reduced to the algebraic equations consisting of finite items by effective truncation. Finally, dynamic stress concentration factor around the edge of cylindrical inclusion and dynamic stress intensity factor at crack tip are calculated, and the influences of effect of interface and different combination of material parameters, etc. on dynamic stress concentration factor and dynamic stress intensity factor are discussed.