Fish oil (FO) has been shown to have anti-inflammatory properties in animal models of inflammatory bowel disease, but how fish peptides (FP) influence intestinal inflammation has been less studied. Male Wistar rats, divided into five groups, were included in a 4-week dietary intervention study. Of the groups, four were exposed in the fourth week to 5 % dextran sulfate sodium (DSS) to induce colitis, while one group was unexposed. The diets were: (1) control, (2) control + DSS, (3) FO (5 %) + DSS, (4) FP (3·5 %) + DSS, (5) FO + FP + DSS. Following DSS intake, weight and disease activity index (DAI) were assessed, and histological combined score (HCS), selected colonic PG, cytokines, oxidative damage markers and mRNA levels were measured. FP reduced HCS, tended to lower DAI (P = 0·07) and reduced keratinocyte chemoattractant/growth-regulated oncogene levels, as compared with the FO diet. FP also reduced mRNA levels of Il-6 and Cxcl1, although not significantly. FO intake increased the DAI as compared with DSS alone. PGE3 levels increased after the FO diet, and even more following FO + FP intake. The FP diet seems to have a protective effect in DSS-induced colitis as compared with FO. A number of beneficial, but non-significant, changes also occurred after FP v. DSS. A combined FO + FP diet may influence PG synthesis, as PGE3 levels were higher after the combined diet than after FO alone.