Recent empirical and theoretical evidence has implicated the geometrical birefringence of the double cones of the green sunfish (Lepomis cyanellus) as the biophysical basis of this vertebrate’s sensitivity to polarized light. Because of the intimate link between the organization of the cone-photoreceptor mosaic and the psychophysical details of polarization sensitivity, we have examined the structural features of the green sunfish cone-photoreceptor mosaic, in particular the orientation of the elliptical cross sections of the double cones. Our primary observations are that (1) the arrangement of the cone-photoreceptor mosaic is constant across the retina (with two regional exceptions), with double cones arranged in a rhombic mosaic and aligned roughly ±45 deg to the nearest retinal margin; (2) the double-cone/single-cone ratio is everywhere the same; (3) cone density is inhomogeneous across the retina, with the highest densities in the temporal hemiretina. These results are discussed as they relate to the animal’s retinal growth and visual mechanisms, particularly the sensitivity to polarized light.