Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:34:34.369Z Has data issue: false hasContentIssue false

The cone photoreceptor mosaic of the green sunfish, Lepomis cyanellus

Published online by Cambridge University Press:  02 June 2009

David A. Cameron
Affiliation:
Department of Biology, University of Michigan, Ann Arbor
Stephen S. Easter Jr
Affiliation:
Department of Biology, University of Michigan, Ann Arbor

Abstract

Recent empirical and theoretical evidence has implicated the geometrical birefringence of the double cones of the green sunfish (Lepomis cyanellus) as the biophysical basis of this vertebrate’s sensitivity to polarized light. Because of the intimate link between the organization of the cone-photoreceptor mosaic and the psychophysical details of polarization sensitivity, we have examined the structural features of the green sunfish cone-photoreceptor mosaic, in particular the orientation of the elliptical cross sections of the double cones. Our primary observations are that (1) the arrangement of the cone-photoreceptor mosaic is constant across the retina (with two regional exceptions), with double cones arranged in a rhombic mosaic and aligned roughly ±45 deg to the nearest retinal margin; (2) the double-cone/single-cone ratio is everywhere the same; (3) cone density is inhomogeneous across the retina, with the highest densities in the temporal hemiretina. These results are discussed as they relate to the animal’s retinal growth and visual mechanisms, particularly the sensitivity to polarized light.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbert, I.-B. (1969). The organization of the cone cells in the retinae of four teleosts with different feeding habits (Perca fluviatilis L., Lucioperca lucioperca L., Acerina cernua L., and Coregonus albula L.). Arkiv för Zoologi 22, 445481Google Scholar
Ahlbert, I.-B. (1976). Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zoologica 57, 1335CrossRefGoogle Scholar
Ali, M.A. & Anctil, M. (1976). Retinas of Fishes: An Atlas. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bathelt, D. (1970). Experimented und vergleichend morphologische untersuchungen am visuellen system von teleostiern. Zoologische Jahrbuecher (Anatomie und Ontogenie) 87, 402470Google Scholar
Baylor, D.A. & Fettlplace, R. (1975). Light path and photon capture in turtle photoreceptors. Journal of Physiology 214, 265294CrossRefGoogle Scholar
Boehlert, G.W. (1978). Intraspecific evidence for the function of single and double cones in the teleost retina. Science 202, 309311CrossRefGoogle ScholarPubMed
Bowmaker, J.K. & Kunz, Y.W. (1987). Ultraviolet receptors, tetrachromatic colour vision, and retinal mosaics in the brown trout (Salmo trutta): Age-dependent changes. Vision Research 27, 21012108CrossRefGoogle ScholarPubMed
Burkhardt, D.A., Hassin, G., Levine, J.S. & MacNichol, E.F. Jr., (1980). Electrical responses and photopigments of twin cones in the retina of the walleye. Journal of Physiology 309, 215228CrossRefGoogle ScholarPubMed
Cameron, D.A. & Pugh, E.N. Jr., (1991). Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353, 161164CrossRefGoogle ScholarPubMed
Cohen, A.I. (1972). Rods and cones. In Handbook of Sensory Physiology, Vol. 11/2, ed. Fuortes, M.G.F., pp. 63110. Berlin: Springer-Verlag.Google Scholar
Dearry, A. & Barlow, R.B. Jr., (1987). Circadian rhythms in the green sunfish retina. Journal of General Physiology 89, 745770CrossRefGoogle ScholarPubMed
Easter, S.S. Jr., (1975). Retinal specialisations for aquatic vision: Theory and facts. In Vision in Fishes, ed., Ali, M.A., pp. 609617. New York: Plenum.CrossRefGoogle Scholar
Easter, S.S. Jr., (1992). Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. Journal of Neuroscience 12, 23812392CrossRefGoogle ScholarPubMed
Easter, S.S. Jr., Johns, P.R. & Baumann, L.R. (1977). Growth of the adult goldfish eye. I: Optics. Vision Research 17, 469477CrossRefGoogle ScholarPubMed
Easter, S.S. Jr., Rusoff, A.C. & Kish, P.E. (1981). The growth and organization of the optic nerve and tract in juvenile and adult goldfish. Journal of Neuroscience 1, 793811CrossRefGoogle ScholarPubMed
Eigenmann, C.H. & Shafer, G.D. (1900). The mosaic of single and twin cones in the retina of fishes. American Naturalist 34, 109118CrossRefGoogle Scholar
Engström, K. (1963). Cone types and cone arrangements in teleost retinae. Ada Zoologica 44, 179243CrossRefGoogle Scholar
Fernald, R.D. (1983). Neural basis of visual pattern recognition in fish. In Advances in Vertebrate Neuroethology, ed. Ewert, J.-P., Capranica, R.R. & Ingle, D.J., pp. 569580. New York: Plenum Press.CrossRefGoogle Scholar
Godement, P., Vanselow, J., Thanos, S. & Bonhoeffer, F. (1987). A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101, 697713CrossRefGoogle ScholarPubMed
Hannover, A. (1840). Ueber die Netzhaut und ihre Gehirnsubstanz bei Wirbelthieren, mit Ausnahme des Menschen. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin 320345Google Scholar
Hitchcock, P.F. & Easter, S.S. Jr., (1986). Retinal ganglion cells in goldfish: A qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience 6, 10371050CrossRefGoogle Scholar
Johns, P.R. (1977). Growth of the adult goldfish eye. III. Source of the new retinal cells. Journal of Comparative Neurology 176, 343358CrossRefGoogle ScholarPubMed
Kock, J.-H. & Reuter, T. (1978). Retinal ganglion cells in the crucian carp (Carassius carassius): II. Overlap, shape, and tangential orientation of dendritic trees. Journal of Comparative Neurology 179, 549568CrossRefGoogle ScholarPubMed
Kunz, Y.W. (1980). Cone mosaics in a teleost retina: Changes during light and dark adaptation. Experientia 36, 13711374CrossRefGoogle Scholar
Kunz, Y.W. & Callaghan, E. (1989). Embryonic fissures in teleost eyes and their possible role in detection of polarized light. Transactions of the American Fisheries Society 118, 1952022.3.CO;2>CrossRefGoogle Scholar
Lyall, A.H. (1957 a). The growth of the trout retina. Quarterly Journal of Microscopical Science 98, 101110Google Scholar
Lyall, A.H. (1957 b). Cone arrangements in teleost retinae. Quarterly Journal of Microscopical Science 98, 189201Google Scholar
Lythgoe, J.N. (1968). Visual pigments and visual range underwater. Vision Research 8, 9971011CrossRefGoogle ScholarPubMed
Marc, R.E. & Sperling, H.G. (1976). The chromatic organization of the goldfish cone mosaic. Vision Research 16, 12111224CrossRefGoogle ScholarPubMed
Marchiafava, P.L. (1985). Cell coupling in double cones of the fish retina. Proceedings of the Royal Society of London B: Biological Sciences 226, 211215Google Scholar
Müller, H. (1857). Anatomisch-physiologishe Untersuchungen uber die Retina bei Menschen und Wirbelthieren. Zeitschrift fuer Wissenschaftliche Zoologie 8, 1122Google Scholar
Müller, H. (1952). Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zoologische Jahrbuecher (Zoologie und Physiologie) 63, 275324Google Scholar
Powers, M.K. & Raymond, P.A. (1990). Development of the visual system. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 419442. London: Chapman & Hall.CrossRefGoogle Scholar
Richter, A. & Simon, E.J. (1974). Electrical responses of double cones in turtle retina. Journal of Physiology 242, 673683CrossRefGoogle ScholarPubMed
Rowe, M., Engheta, N. & Pugh, E.N. Jr., (1991). Can birefringence explain the polarization analyzing capability of teleost double cones? Society for Neuroscience Abstracts 17, 297.Google Scholar
Rusoff, A.C. & Easter, S.S. Jr., (1980). Order in the optic nerve of goldfish. Science 208, 311312CrossRefGoogle ScholarPubMed
Ryder, J.A. (1895). An arrangement of the retinal cells in the eyes of fishes partially simulating compound eyes. Proceedings of the Academy of Natural Sciences of Philadelphia 161166Google Scholar
Scholes, J.H. (1979). Nerve fibre topography in the retinal projection to the tectum. Nature 278, 620624CrossRefGoogle Scholar
Stell, W.K. & Harosi, F.I. (1976). Cone structure and visual pigment content in the retina of the goldfish. Vision Research 16, 647657CrossRefGoogle ScholarPubMed
Tobey, F.L. Jr., Enoch, J.M. & Scandrett, J.H. (1975). Experimentally determined optical properties of goldfish cones and rods. Investigative Ophthalmology 14, 723Google ScholarPubMed
Wagner, H.-J. (1972). Vergleichende untersuchungen über das muster der sehzellen und horizontalen in der teleostier-retina (Pisces). Zeitschrifte fuer Morphologie Tiere 72, 77130Google Scholar
Wagner, H.-J. (1976). Patterns of golgi-impregnated neurons in a predator-type fish retina. In Neural Principles of Vision, ed. Zettler, F. & Weiler, R., pp. 725. Berlin: Springer.CrossRefGoogle Scholar
Wagner, H.-J. (1990). Retinal structure of fishes. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 109157. London: Chapman & Hall.CrossRefGoogle Scholar
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. New York: Hafner.Google Scholar
Waterman, T.H. & Forward, R.B. Jr., (1970). Field evidence for polarized light sensitivity in the fish Zenarchopterus. Nature 228, 8587CrossRefGoogle ScholarPubMed
Young, S.R. & Martin, G.R. (1984). Optics of retinal oil droplets: A model of light collection and polarization detection in the avian retina. Vision Research 24, 129137CrossRefGoogle Scholar