We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, the basic equations of fluid dynamics are derived and their physical significances are discussed in depth and in examples. Both integral and differential forms of the continuity equation, momentum equation, and energy equation are derived. In addition, Bernoulli’s equation, angular momentum equation, enthalpy equation and entropy equation are also introduced. Finally, several analytical solutions of these governing equations are shown, and the mathematical properties of the equations are discussed. Besides the fundamental equations, some important concepts are explained in this chapter, such as the shaft work in integral energy equation and its origin in differential equations, the viscous dissipation term in the differential energy equation and its relation with stress and deformation, and the method to increase total enthalpy of a fluid isentropically.
In addition to the continuity equation, there is another very important equation that is often employed alongside the Navier–Stokes equations: the energy equation. The energy equation is required to fully describe compressible flows. This chapter guides the student through the development of the energy equation, which can be an intimidating equation. A discussion on diffusion and its interplay with advection is also included, leading to the idea of a boundary layer. The chapter ends with the addition of the energy equation in shear-driven and pressure-driven flows.
Physically based approaches to hydraulic geometry relations for width, depth, velocity, and slope require equations of continuity of water, roughness, and sediment transport. Different methods have been employed for different expressions of roughness and sediment transport. Without delving into their underlying theories, this chapter briefly outlines these expressions as they will be invoked in subsequent chapters. Also, unit stream power, stream power as well as entropy have been employed, which are also briefly discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.