Published online by Cambridge University Press: 16 March 2023
In this chapter, the basic equations of fluid dynamics are derived and their physical significances are discussed in depth and in examples. Both integral and differential forms of the continuity equation, momentum equation, and energy equation are derived. In addition, Bernoulli’s equation, angular momentum equation, enthalpy equation and entropy equation are also introduced. Finally, several analytical solutions of these governing equations are shown, and the mathematical properties of the equations are discussed. Besides the fundamental equations, some important concepts are explained in this chapter, such as the shaft work in integral energy equation and its origin in differential equations, the viscous dissipation term in the differential energy equation and its relation with stress and deformation, and the method to increase total enthalpy of a fluid isentropically.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.