The somatotrophic axis is the main endocrine system regulating postnatal growth; however, prenatal growth is independent of growth hormone (GH). Fetal development relies on the coordinated actions of a range of hormones, including insulin-like growth factors (IGF), and prolactin (PRL), in the control of differentiation, growth and maturation. In the sheep the abundance peaks for liver IGF-II and PRL receptors occur during late gestation while that for IGF-I receptor occurs at birth. All receptors, with the exception of GH receptor subsequently decrease by age 6 months. It has been proposed that maternal undernutrition during gestation regulates the maturation of the fetal hypothalmic–pituitary–adrenal axis and endocrine sensitivity. Critically, the timing of the nutritional insult may affect the magnitude of reprogramming. Maternal malnutrition during early to mid-gestation (3·2–3·8 MJ/d (60% total metabolisable energy requirements) v. 8·7–9·9 MJ/d (150% total metabolisable energy requirements) between 28 and 80 d of gestation) had no effect on body or liver weight. Nutrient-restricted (NR) fetuses sampled at 80 d (mid-gestation) showed up-regulation of hepatic PRL receptor, but following refeeding the normal gestational rise in PRL and GH receptors did not occur. Hepatic IGF-II receptor was down regulated in NR fetuses at both mid- and late gestation. Conversely, 6-month-old offspring showed no difference in the abundance of either GH receptor or PRL receptor, while IGF-II mRNA was increased. Offspring of ewes malnourished during late gestation (9·1 MJ/d (60% total metabolisable energy requirements) v. 12·7 MJ/d (100% total metabolisable energy requirements) from 110 d of gestation to term) showed reduced abundance of hepatic GH and PRL receptor mRNA. In conclusion, maternal undernutrition during the various stages of gestation reprogrammed the PRL–GH–IGF axis. Nutritional regulation of cytokine receptors may contribute to altered liver function following the onset of GH-dependent growth, which may be important in regulating endocrine adaptations during subsequent periods of nutritional deprivation.