We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose $\mathcal {H}$ is an admissible Heegaard diagram for a balanced sutured manifold $(M,\gamma )$. We prove that the number of generators of the associated sutured Heegaard Floer complex is an upper bound on the dimension of the sutured instanton homology $\mathit {SHI}(M,\gamma )$. It follows, in particular, that strong L-spaces are instanton L-spaces.
Let $Y$ be a homology sphere which contains an incompressible torus. We show that $Y$ cannot be an $L$-space, i.e. the rank of $\widehat{\text{HF}}(Y)$ is greater than $1$. In fact, if the homology sphere $Y$ is an irreducible $L$-space, then $Y$ is $S^{3}$, the Poincaré sphere $\unicode[STIX]{x1D6F4}(2,3,5)$ or hyperbolic.
We characterize the $(1,1)$ knots in the 3-sphere and lens spaces that admit non-trivial L-space surgeries. As a corollary, 1-bridge braids in these manifolds admit non-trivial L-space surgeries. We also recover a characterization of the Berge manifold among 1-bridge braid exteriors.
We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.
We use Hamiltonian Floer theory to recover and generalize a classic rigidity theorem of Ekeland and Lasry. That theorem can be rephrased as an assertion about the existence of multiple closed Reeb orbits for certain tight contact forms on the sphere that are close, in a suitable sense, to the standard contact form. We first generalize this result to Reeb flows of contact forms on prequantization spaces that are suitably close to Boothby–Wang forms. We then establish, under an additional nondegeneracy assumption, the same rigidity phenomenon for Reeb flows on any closed contact manifold. A natural obstruction to obtaining sharp multiplicity results for closed Reeb orbits is the possible existence of fast closed orbits. To complement the existence results established here, we also show that the existence of such fast orbits cannot be precluded by any condition which is invariant under contactomorphisms, even for nearby contact forms.
We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-contractible periodic orbits. In a variety of settings, we show that the presence of one non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally monotone or toroidally negative monotone symplectic manifold implies the existence of infinitely many non-contractible periodic orbits in a specific collection of free homotopy classes. The main new ingredient in the proofs of these results is a filtration of Floer homology by the so-called augmented action. This action is independent of capping and, under favorable conditions, the augmented action filtration for toroidally (negative) monotone manifolds can play the same role as the ordinary action filtration for atoroidal manifolds.
A celebrated theorem in two-dimensional dynamics due to John Franks asserts that every area-preserving homeomorphism of the sphere has either two or infinitely many periodic points. In this work we re-prove Franks’ theorem under the additional assumption that the map is smooth. Our proof uses only tools from symplectic topology and thus differs significantly from previous proofs. A crucial role is played by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian diffeomorphisms.
We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.