The purpose of the present paper is to review recent theoretical developments in food intake modelling applied to animal science and ecology. The models are divided into those that have been developed for intensive agricultural systems, and those which consider more extensive systems and natural systems. For the most part the present paper discusses models that predict the food intake of herbivores. The mechanisms of each model are discussed, along with a brief mention of the experimental support for the most popular models. We include a discussion of models that approach the study of food intake behaviour from an evolutionary perspective, and suggest that lifetime models are especially useful when food intake carries an intrinsic cost. These long timescale evolutionary models contrast with the more common food intake models, whose timescale is usually much shorter. We conclude that the ‘eating to requirements’ model highlights an important food intake mechanism that provides an accurate predictive tool for intensive agricultural systems. The mechanisms of food intake regulation in extensive systems are less certain, and closer links between the ideas of animal science and ecology will be helpful for improving our understanding of food intake regulation.