A new solution to the additive constant problem in metric multidimensional scaling is developed. This solution determines, for a given dimensionality, the additive constant and the resulting stimulus projections on the dimensions of a Euclidean space which minimize the sum of squares of discrepancies between the formal model for metric multidimensional scaling and the original data. A modification of Fletcher-Powell style functional iteration is used to compute solutions. A scale free index of the goodness of fit is developed to aid in selecting solutions of adequate dimensionality from multiple candidates.