We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that given a cut-and-project scheme $(G, H, \mathcal {L})$ and a compact window $W \subseteq H$, the natural projection gives a bijection between the Fourier transformable measures on $G \times H$ supported inside the strip ${\mathcal L} \cap (G \times W)$ and the Fourier transformable measures on G supported inside ${\LARGE \curlywedge }(W)$. We provide a closed formula relating the Fourier transform of the original measure and the Fourier transform of the projection. We show that this formula can be used to re-derive some known results about Fourier analysis of measures with weak Meyer set support.
In this paper we characterize the Fourier transformability of strongly almost periodic measures in terms of an integrability condition for their Fourier–Bohr series. We also provide a necessary and sufficient condition for a strongly almost periodic measure to be the Fourier transform of a measure. We discuss the Fourier transformability of a measure on $\mathbb{R}^{d}$ in terms of its Fourier transform as a tempered distribution. We conclude by looking at a large class of such measures coming from the cut and project formalism.
In this paper we characterize the positive definite measures with discrete Fourier transform. As an application we provide a characterization of pure point diffraction in locally compact Abelian groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.