Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T04:24:54.817Z Has data issue: false hasContentIssue false

Positive Definite Measures with Discrete Fourier Transform and Pure Point Diffraction

Published online by Cambridge University Press:  20 November 2018

Nicolae Strungaru*
Affiliation:
Department of Mathematical Sciences, Grant MacEwan University, Edmonton, AB, T5J 4S2, andInstitute of Mathematics “Simon Stoilow”, Bucharest, Romania e-mail: strungarun@macewan.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we characterize the positive definite measures with discrete Fourier transform. As an application we provide a characterization of pure point diffraction in locally compact Abelian groups.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Argabright, L. and de Lamadrid, J. Gil, Fourier analysis of unbounded measures on locally compact abelian groups. Memoirs of the American Mathematical Society, 145, American Mathematical Society, Providence, RI, 1974.Google Scholar
[2] Baake, M. and Lenz, D., Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergodic Theory Dynam. Systems 24(2004), no. 6, 18671893. doi:10.1017/S0143385704000318Google Scholar
[3] Baake, M. and Moody, R. V.,Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. 573(2004), 6194.Google Scholar
[4] Berg, C. and Forst, G., Potential theory on locally compact abelian groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, 87, Springer-Verlag, New York-Heidelberg, 1975.Google Scholar
[5] Dworkin, S., Spectral theory and X-ray diffraction. J. Math. Phys. 34(1993), no. 7, 29652967. doi:10.1063/1.530108Google Scholar
[6] Eberlein, W. F., A Note on Fourier-Stieltjes transforms. Proc. Amer. Math. Soc. 6(1955), 310312. doi:10.1090/S0002-9939-1955-0068030-2Google Scholar
[7] Gouéré, J. B., Quasicrystals and almost periodicity. Comm. Math. Phys. 225(2005), no. 3, 655681. doi:10.1007/s00220-004-1271-8Google Scholar
[8] Hewitt, E. and Ross, K. A., Abstract harmonic analysis. II. Structure and analysis for compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischenWissenschaften, 152, Springer-Verlag, New York-Berlin 1970.Google Scholar
[9] Hof, A., Diffraction by aperiodic structures. Commun. Math. Phys. 169(1995), no. 1, 2543. doi:10.1007/BF02101595Google Scholar
[10] Gil. de Lamadrid, J. and Argabright, L. N, Almost periodic measures. Mem. Amer. Math. Soc. 28(1990), no. 428.Google Scholar
[11] J-Y., Lee, Moody, R. V., and Solomyak, B., Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(2002), no. 5, 10031018. doi:10.1007/s00023-002-8646-1Google Scholar
[12] Lenz, D. and Strungaru, N., Pure point spectrum for measurable dynamical systems on locally compact abelian groups. J. Math. Pures Appl. 92(2009), no. 4, 323341.Google Scholar
[13] Moody, R. V. and Strungaru, N., Point sets and dynamical systems in the autocorrelation topology. Canad. Math. Bull. 47(2004), no. 1, 8299. doi:10.4153/CMB-2004-010-8Google Scholar
[14] Schlottmann, M., Cut-and-project sets in locally compact abelian groups. In: Quasicrystals and discrete geometry (Toronto, ON, 1995), Fields Inst. Monogr., 10, American Mathematical Society, Providence, RI, 1998, pp. 247264.Google Scholar